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We present a computational framework for designing geometric metamateri-
als capable of approximating freeform 3D surfaces via rotationally deployable
kirigami patterns. While prior inverse design methods typically rely on stan-
dard, well-studied patterns, such as equilateral triangles or quadrilaterals,
we step back to examine the broader design space of the patterns themselves.
Speci!cally, we derive principled rules to determine whether a given planar
tiling can be cut into a rotationally deployable hinged kirigami structure
with possible curvature adaptation. These insights allow us to generate and
validate a broad family of novel tiling patterns beyond traditional examples.
We further analyze two key deployment states of a general pattern: the
commonly used maximal area expansion, and the maximal rotation angle
reached just before face collisions occur, which we adopt as the default for
inverse design as it allows for simple deployment in practice, i.e., rotating
the faces to their natural limit. Finally, we solve the inverse problem: given a
target 3D surface, we compute a planar tiling that, when cut and deployed to
its maximal rotation angle, approximates the input geometry. We show that
for a subset of patterns, the deployed con!gurations are hole-free, demon-
strating that curvature can be achieved from planar sheets through local
combinatorial changes. Our experiments, including physical fabrications,
demonstrate the e"ectiveness of our approach and validate a wide range
of previously unexplored patterns that are both physically realizable and
geometrically expressive.
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1 Introduction
The design of geometric metamaterials that transform #at sheets,
such as paper, metal and fabric, into prescribed 3D shapes is a
central challenge in computational fabrication. A key objective is
to achieve programmable curvature by encoding geometric infor-
mation into planar sheets to enable controlled deformation into
target freeform surfaces. Various strategies have been developed to
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Fig. 1. The deployment of a closed hemispherical shape from a flat, gapless,
optimized tiling (the computed tiling contains no gaps; the visible openings
result from laser cu!ing). Engraved arrows help visualize local orientations.

achieve this objective. Origami-based methods generate curvature
through controlled folding, concealing excess material via crease
patterns [Tachi 2008]. Smocking techniques, adapted from textile de-
sign, induce curvature by gathering excess fabric into pleats [Segall
et al. 2024]. Kirigami-based methods create strategic cuts in the #at
material, introducing holes to accommodate curvature [Konakovi$
et al. 2018; Jiang et al. 2020, 2022]. Other methods leverage in#at-
able designs [Skouras et al. 2014; Jin et al. 2020; Panetta et al. 2021;
Ren et al. 2024a; He et al. 2025] or grid shell structures [Panetta
et al. 2019; Schikore et al. 2021; Becker et al. 2023; Liu et al. 2023] to
achieve curvature during deployment.
Beyond these well established paradigms, there exists a less ex-

plored but powerful mechanism for achieving curvature: local con-
nectivity recon!guration. Through speci!c cuts, a planar tiling can be
converted into a hinged kirigami structure, allowing its faces to ro-
tate rigidly on hinge vertices. This approach enables programmable
curvature to emerge from local combinatorial changes, as illustrated
in Figures 1 and 2. Such hinged kirigami structures are often referred
to as auxetic structures.
Prior work on hinged kirigami structures typically starts from

a !xed, well-known pattern, such as a regular tessellation with
equilateral triangles [Konakovi$ et al. 2018] or squares [Jiang et al.
2022], and optimizes it for deployment at maximal area expansion,
where holes introduced by cuts are opened to become as large
as possible, allowing the structure to accommodate the prescribed
curvatures. While e"ective, such methods are fundamentally limited
by the expressive range of a standard pattern types and do not
fully leverage the curvature potential that arises from connectivity
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opening the hinged kirigami structure via in-plane face rotations about hinge vertices

opt. planar tiling deployed

init.
max.
area max. angle

cut open
& rotate

Fig. 2. A planar tiling mesh is cut along all interior edges, leaving specifically computed hinges at all vertices, such that the structure can be opened up and
expanded in-plane (first five columns) or into a 3D shape (last two columns) solely via rigid transformations of the faces. The color gradients help visualize the
rotations of the faces occurring during deployment. The three pa!erns in the first column have been explored in prior work on shape morphing: Konakovi"
et al. [2018] and Jiang et al. [2022] studied the triangular pa!ern (first row) and quadrilateral pa!ern (second row), while the third-row pa!ern resembles a
waving pa!ern shown in [Ren et al. 2021]. However, these works primarily focus on a single deployed state: the configuration with maximal area expansion
during deployment (third column). In contrast, our work extends the deployment process to a second extreme: the configuration with maximal rotation angle
(fi#h column), beyond which face collisions occur. Moreover, we explicitly consider both the pre- and post-deployment configurations. This enables us to
design fully closed, hole-free planar tilings (second-to-last column) that, when cut and deployed, achieve the target 3D freeform surface shapes (last column).

changes–those triggered at the maximal rotation angle where face
collisions occur (e.g. in Fig. 2, !fth column). In this work, we explore
the broader design space of planar tilings and address the challenge:
Which tilings can be cut into rotationally deployable hinged kirigami
structures that realize target curvatures through local combinatorial
changes and hole formations when the hinged faces reach their
rotational limits during deployment?

Our main contributions are: (1) We present a systematic study of
the relationship between planar manifold tilings, kirigami patterns
and metamaterial design. Speci!cally, we address the following
fundamental question: Which planar tilings admit a valid cutting
pattern such that the resulting hinged kirigami structure holds
rotational freedom for deployment, which is commonly used in
metamaterial design. (2) We propose an e"ective formulation and
an e%cient pipeline to design planar tilings, verify their validity
for deriving a deployable hinged kirigami structure and simulate
the deployment process of valid patterns. (3) We target two critical
deployment con!gurations: maximal area expansion (achieving the
largest projected coverage) and maximal rotation angle (beyond
which face collisions occur), and mathematically characterize the
latter. (4) We solve the inverse design problem by computing 2D
tilings that, when cut and deployed to their maximal rotation angle,
approximate target 3D surfaces.

2 Related work
Geometric metamaterials are a subset of mechanical metamaterials
that can achieve complex geometric shapes through speci!c manip-
ulations. These manipulations include folding #at sheet materials
such as paper or metal, commonly known as origami [Wei et al.
2013; Dudte et al. 2016; Narumi et al. 2023], cutting #at sheets with
interconnected hinges (a technique often regarded as a subset of
kirigami) [Konakovi$ et al. 2016, 2018; Choi et al. 2019; An et al.
2020; Dang et al. 2021; Jiang et al. 2022] and stitching [Segall et al.
2024; Chang et al. 2024]. Geometric metamaterials are typically
characterized by periodic tessellations of simple shapes, such as tri-
angles [Konakovi$ et al. 2016, 2018; Chen et al. 2021; Koh et al. 2023],
quadrilaterals [Wang et al. 2017; Rafsanjani and Bertoldi 2017; Celli
et al. 2018; Choi et al. 2019; Jin et al. 2020; Jiang et al. 2022; Dudte
et al. 2023] and hexagons [Castle et al. 2014, 2016], as well as more
intricate and complex patterns [Rafsanjani and Pasini 2016; Malomo
et al. 2018; Segall et al. 2024]. These tessellations can be computa-
tionally designed or modi!ed to achieve target 3D geometric shapes,
often via an inverse design problem formulation.
Our work is inspired by Konakovi$ et al. [2018] and Jiang et al.

[2022] and focuses on a similar problem: designing rigid kirigami-
based geometric metamaterials. Konakovi$ et al. [2018] focus on
optimizing triangular auxetic patterns using conformal mappings,
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Fig. 3. Potential application in architecture: The target structure can be
fabricated flat, in one piece without gaps or holes (le!). Joints could be
locally installed and rotated, altering connectivity and inducing curvature,
thus allowing the design to deploy seamlessly into its final 3D form (right).

attaining target curvatures at full expansion starting from a semi-
closed con!guration. Jiang et al. [2022] focus on optimizing quadri-
lateral patterns based on the principal stretch directions, achieving
target curvatures at full expansion starting from a fully-closed con-
!guration (gap-free). We aim to develop a more general framework
capable of handling diverse kirigami patterns. In many cases, these
patterns lack analytic solutions for describing their full expansion,
and the expansion or closing process might not follow a conformal
deformation as in [Konakovi$ et al. 2018], nor maintain a !xed ratio
between the principal stretch directions as in [Jiang et al. 2022].

Recon!gurable metamaterials. While geometric metamaterials
are primarily focused on achieving speci!c target 3D shapes at the
!nal deployment stage, recon!gurable metamaterials also take into
account additional aspects of the deployment process, including the
initial geometry (e.g., fully closed) [Jiang et al. 2022; Dudte et al.
2023], intermediate geometric shapes [Tang et al. 2019; Dang et al.
2022; Dudte et al. 2023], mechanisms [Jiang et al. 2022, 2024; Liu
et al. 2024], material properties [Tang and Yin 2017; Yang et al.
2018; Gu et al. 2024] and mechanical properties [Lee et al. 2012;
Schenk and Guest 2013; Ma et al. 2018] during transformations.
Among recon!gurable metamaterials, those exhibiting mechanical
bistability have gained signi!cant attention due to their ability to
achieve rapid changes in shape or functionality [Rafsanjani and
Pasini 2016; Chen et al. 2021; Jiang et al. 2022; Koh et al. 2023].
The closest related to ours is by Dudte et al. [2023], who propose a
computational method for constructing non-manifold quad patterns
that exhibit two fully closed states, each approximating a given 2D
shape contour. We extend their work in two key directions: (1) Our
method generalizes to a broader class of kirigami patterns, including
those inspired by origami [Tachi 2013], smocking [Ren et al. 2024b;
Segall et al. 2024], or derived from planar tilings, and (2) our method
enables the realization of 3D curved shapes, broadening the design
space and practical applications.

Inverse design. Recent advancements in computational fabrica-
tion have explored a wide range of techniques for creating complex

opt. planar tiling deployed

simulated
deployment process

Fig. 4. A textured 3D puzzle, deployed from a flat configuration.

3D geometric structures using various materials, including fab-
ric [Zhang et al. 2019; Jourdan et al. 2020; Segall et al. 2024; Chang
et al. 2024], yarns [Narayanan et al. 2018; Wu et al. 2019; Edelstein
et al. 2022], in"atable materials [Skouras et al. 2014; Jin et al. 2020;
Panetta et al. 2021; Ren et al. 2024a], developable materials such
as paper and metal sheets [Demaine and Tachi 2017; Callens and
Zadpoor 2018; Stein et al. 2018; Jiang et al. 2020; Ion et al. 2020;
Binninger et al. 2021; Zhao et al. 2022; Narumi et al. 2023; He et al.
2024] stretchable materials [Jourdan et al. 2022; Guseinov et al. 2017;
Shimoda et al. 2023] and auxetic materials [Konakovi$ et al. 2016,
2018; Chen et al. 2021; Jiang et al. 2022]. Target shapes or curvatures
can be actuated through various methods, such as heat [Jourdan
et al. 2023; Narumi et al. 2023; Koh et al. 2023; Chen et al. 2024;
Walker and Shea 2024], tension [Guseinov et al. 2017; Pérez et al.
2017], bending [Pérez et al. 2015; Kilian et al. 2017; Panetta et al. 2019;
Ren et al. 2022; Becker et al. 2023; Liu et al. 2023; Becker et al. 2024;
Ono et al. 2024], and gravity [Chen et al. 2014; Malomo et al. 2018;
Zhang et al. 2019]. While these techniques often rely on physical
simulation, another popular direction involves geometric solutions
with computationally prescribed curvatures [Dudte et al. 2016; Kon-
akovi$ et al. 2018; Choi et al. 2019; Jiang et al. 2020, 2022; Segall et al.
2024]. Our work falls within the realm of geometry-based inverse
design, where the fabrication is achieved using solid materials con-
nected with joints, without additional actuation steps. Similar to
other recon!gurable structures [Kusupati et al. 2023; Becker et al.
2024], our recon!gurable kirigami design is cost-e"ective thanks
to its minimal material waste: prior to deployment, the structure
forms a planar tiling without holes or gaps, eliminating the need to
remove excess material.

3 Background
3.1 Definitions & notation
A planar tiling (either periodic or aperiodic) is an arrangement of
geometric shapes (typically polygons) that fully covers a planar
region without overlaps or gaps, e.g., see Fig. 6 (a). We refer to
a 2D manifold polygonal mesh with disk topology as a tiling to
emphasize that the mesh contains no holes. We denote the mesh
(tiling) as T = (V, F ), where V is the set of vertices, and F is the
list of planar polygonal faces. A complete cut of tiling T , denoted E𝐿 ,
is a set of directed edges that covers all interior edges of T (see Fig. 6
(b)). For an interior edge 𝐿 of T , let ↑𝐿 denote its associated directed
cut edge in E𝐿 , where the direction determines the placement of
the hinge. For example, consider an interior edge (𝑀1, 𝑀2) = 𝑁𝑀 ↓ 𝑁𝑁
shared by two faces 𝑁𝑀 and 𝑁𝑁 . If the associated directed cut edge
in E𝐿 is ↑𝐿 = (𝑀1 → 𝑀2), then after applying the cut, a duplicated
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(a) input tiling

T = (V, F)
deployable?

!nd unit

𝑂𝐿

𝑂1𝐿

𝑂2𝐿𝑂3𝐿

(b) complete cut E𝑀

!nd cuts cut open

rotate to open
(c) hinged kirigami

T = (V, F)

max. area con!g.

max. angle con!g.

glue

𝑂1𝐿

𝑂 𝑁

T𝑂 = (V𝑂 , F)

joint optimization
(d) optimized T = (X, F) (e) optimized T𝑂 = (Y, F)

recon!gure

Fig. 5. Method overview. Given a planar tiling (a), our method first determines whether the tiling is deployable (step ✁), Sec. 4.1). If deployable, we identify
the unit tile (step ✂, Sec. 4.2), apply the complete cut E𝑀 , defined in Sec. 3.1 (step ✃) to create a hinged kirigami structure, defined in Sec. 3.1 (step ✄) and
simulate its deployment process. The pa!ern first reaches its maximal area expansion configuration (step ☎), then continues to its maximal rotation angle
configuration (step ✆). Beyond this point, further deployment would cause face collisions, so the maximal angle configuration is selected as the final deployed
state. In this deployed configuration, we merge co-located vertices (step ✇), resulting in a new mesh T𝑂 . Finally, we jointly optimize the initial configuration
T and the deployed configuration T𝑂 , constraining T to remain planar and T𝑂 to approximate a target 3D geometry while preserving reconfigurability
between the two: both configurations share the same set of faces, arranged di$erently (step ✈, Sec. 4.3).

edge 𝐿 is created, emanating from the same source vertex. As a
result, the faces 𝑁𝑀 and 𝑁𝑁 are no longer connected along the edge,
but instead hinge at the source vertex. See the blue/red arrows in
Fig. 6 (b,c). Applying the complete cut E𝐿 to the tiling T yields
a new, non-manifold 2D polygonal mesh T = (V, F ), where V
includes the original verticesV and their duplicates induced by the
cuts, and F retains the same geometric shapes as F in one-to-one
correspondence but with updated vertex indices due to the altered
connectivity. Since a complete cut E𝐿 covers all interior edges of
T by de!nition, applying it yields a structure where all faces are
connected solely by hinge vertices, with no shared edges between
them. We say that a tiling T admits a hinged kirigami structure if
there exists a complete cut E𝐿 such that in the resulting mesh T ,
every vertex that originates from an interior vertex in T is shared by
exactly two faces in T . See Figures 5 and 6 for examples of hinged
kirigami structures.
De!nition 3.1 (Deployability). A hinged kirigami pattern is de-
ployable if its faces can rotate rigidly around hinge vertices without
collision with neighboring faces. We call a tiling deployable if it
admits a deployable hinged kirigami structure. We call the angle
between the duplicated edges 𝐿 and 𝐿 after cutting the opening angle,
denoted as 𝑂𝑃 (see Fig. 6 (c)). We call a deployable tiling uniformly
deployable if the opening angles of all interior edges are equal to
each other in every deployment con!guration.

3.2 Problem formulation
Our work bridges kirigami, auxetic metamaterials and computa-
tional design by addressing three core challenges.
Problem 3.1 (Deployability of tilings). How can we determine
whether a tiling is deployable, i.e., whether there exists a complete

(a) tiling T = (V, F) (b) complete cut E𝑀 (c) hinged kirigami T

𝑂1 𝑂2 𝑂3

𝑂4

𝑃1

(𝑂1 → 𝑂2 )

𝑃2 (𝑂4 → 𝑂3 )

𝑃1

𝑃1
𝑄1

𝑃2 𝑃2

𝑄2

Fig. 6. Le! : a manifold tiling T with vertices V and (polygonal) faces F.
Middle: an example complete cut E𝑀 (highlighted by arrows), i.e., a set of
directed edges covering all interior edges in T. Right : the hinged kirigami
structure T , obtained by applying the complete cut E𝑀 to the tiling T . Each
directed cut edge 𝑃 = (𝑂𝐿 → 𝑂𝑁 ) creates a duplicated edge 𝑃 that emanates
from the same vertex as 𝑃 (with an associated opening angle 𝑄𝑃 ), such that
the two neighboring faces of 𝑃 hinge at this vertex.

cut that transforms the tiling into a hinged kirigami structure whose
faces can rotate rigidly about hinge vertices without collision?

Problem 3.2 (Rotational deployment analysis). Given a deploy-
able hinged kirigami pattern, how can we mathematically character-
ize the bounds of face rotations about hinges, i.e., its opening angles,
that de!ne its maximally open con!gurations during deployment?

Observation 3.1. A deployable hinged kirigami pattern typically
admits two distinct maximally open con!gurations during deploy-
ment: (1)maximal area expansion, where the pattern achieves its
largest projected coverage area, and (2)maximal rotation angle,
beyond which further rotation would cause face collisions.

Problem 3.3 (Inverse design). How can we computationally mod-
ify a 2D manifold tiling such that, when cut and rotated to the
maximal opening angle, it achieves a desired 3D geometry?

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, HK, China.



Reconfigurable Hinged Kirigami Tessellations • 5

State-of-the-art analysis. Problems 3.2 and 3.3 have been partially
addressed for speci!c standard patterns with well-de!ned maximal
area expansion con!gurations. For example, the regular equilateral
triangular pattern studied in [Konakovi$ et al. 2016, 2018] achieves
maximal area expansion when neighboring hinge vertices become
concyclic, as its deployment follows a conformal transformation.
The quadrilateral pattern studied in [Jiang et al. 2022] reaches maxi-
mal area expansion when adjacent faces form right angles at hinge
vertices. While these observations enable e"ective inverse design
solutions, critical gaps remain: (1) Existing methods ignore maximal
opening angle con!gurations, which signi!cantly enrich the design
space and provide intuitive deployment guidance, namely, rotating
until face collision occurs, rather than targeting speci!c geometric
conditions like concyclic positions or right angles. (2) The optimized
patterns contain gaps in their “closed” state (before deployment),
leading to material waste and increased manufacturing complexity.
On the other hand, Dudte et al. [2023] are, to our knowledge, the
!rst to examine both maximal area expansion and maximal open-
ing angle con!gurations in non-manifold quadrilateral patterns.
However, their work only addresses inverse design for 2D contour
approximation, leaving the more challenging 3D shape realization
unsolved. Consequently, neither Problem 3.2 nor Problem 3.3 has
been fully resolved for conventional regular patterns.

Challenges. We address the key questions formulated in Prob-
lems 3.1, 3.2 and 3.3 for general tilings like the one shown in Fig. 5.
These patterns raise three fundamental challenges: (1) determining
whether a complete cut exists that ensures connectivity and enables
deployability in the resulting hinged kirigami structure, (2) math-
ematically characterizing their maximally open con!gurations in
terms of area expansion and rotation angle, and (3) ensuring a gap-
free closed state before deployment in inverse-designed patterns.
Note that maximally open con!gurations typically lack analytic so-
lutions, and the maximal rotation angle con!gurations often retain
holes, see e.g. Figures 3 and 5.

4 Method
To address the aforementioned challenges, we !rst develop princi-
pled rules to determine the existence of a complete cut on a given
2D manifold tiling (see Sec. 4.1). Next, we quantify the maximally
open states (w.r.t. area expansion and opening angle) of the hinged
kirigami structure formed by the unit tile and its immediate neigh-
bors extracted from the input tiling (see Sec. 4.2). These building
blocks enable inverse design of planar tilings that achieve target
curvatures upon deployment (see Sec. 4.3).

4.1 Constructing hinged kirigami structures from tilings
To address Problem 3.1, i.e., deriving a deployable hinged kirigami
structure from a given planar tiling represented as a manifold mesh
T = (V, F ), the input tiling must satisfy the following conditions:
(1) Combinatorial condition: there exists a complete cut E𝐿 such
that in the resulting hinged mesh T = (V, F ), each vertex in
V originating from an interior vertex of T is shared by exactly
two faces. (2) Geometric condition: the complete cut E𝐿 enables
deployability ofT , i.e., it permits faces to rigidly rotate by a non-zero
angle around hinge vertices without collision.

𝑅𝐿

𝑅 𝑅𝑁

𝑂

𝑃 𝑁

𝑃𝐿

𝑅𝐿

𝑅
𝑅𝑁

𝑂
𝑅𝐿

𝑅 𝑅𝑁

𝑂

𝑃 𝑁

𝑃𝐿
𝑅𝐿

𝑅

𝑅𝑁

T, E𝑀 T T, E↔
𝑀 T↔

Fig. 7. Consider face 𝑅 of tiling T, let its two neighboring faces 𝑅𝐿 and 𝑅𝑁
share a common vertex 𝑂 via edges 𝑃𝐿 and 𝑃 𝑁 . The cuts assigned to 𝑃𝐿 and 𝑃 𝑁
in the complete cut E𝑀 must have alternating directions. If both cuts point
into (le!, E𝑀 ) or away (right, E↔

𝑀 ) from 𝑂, the resulting structure violates
the hinged kirigami condition–either leaving a dangling vertex 𝑂 (le!, T) or
connecting more than two faces at 𝑂 (right, T↔

).

Recall the de!nition of a cut: given an edge (𝑀1, 𝑀2) shared by
faces 𝑁𝑀 and 𝑁𝑁 , if its associated cut is directed as (𝑀1 → 𝑀2), the
resulting structure contains a duplicated edge emanating from the
same vertex, causing the two faces to hinge at that source vertex.
From this, we conclude that two adjacent cut edges, belonging to
the same face and sharing a vertex 𝑀 , must have di"erent directions
at 𝑀 , i.e., one cut edge starts at 𝑀 and the other ends at 𝑀 . Otherwise,
the resulting cut structure would either contain a dangling vertex
or cause a vertex to be shared by more than two faces, violating the
de!nition of a hinged kirigami structure. See Fig. 7 for examples
of violations of this condition. Therefore, checking the combinato-
rial condition reduces to a graph problem: does the tiling admit a
complete cut such that every pair of adjacent cut edges has alternat-
ing directions? This is equivalent to the 2-colorability of the dual
graph of the tiling. The dual is a planar graph, which means it is
2-colorable, or bipartite, if and only if all its faces (dual of vertices)
consist of an even number of edges [Bandelt et al. 2010]. This leads
to the following observation:

Remark 4.1. A planar manifold tiling can be cut into a valid hinged
kirigami pattern if and only if all its interior vertices have even
valency.

ℓ = 1
ℓ = 1ℓ = 1

ℓ = 1

Fig. 8. Non-deployable

We can therefore verify the combinato-
rial condition for deployability by check-
ing whether all interior vertex valences are
even. Satisfying this condition guarantees
the existence of a complete cut where ad-
jacent cut edges at every vertex alternate
in direction, without violations like those
shown in Fig. 7, resulting in a valid hinged
kirigami structure. This valid complete cut
E𝐿 is fully determined, up to reversal of all
cut directions. See Sec. A in the supplementary material for details
on its construction. While even vertex valency guarantees valid
combinatorial connectivity after cutting, it does not ensure geomet-
ric rotational freedom in the resulting structure. Fig. 8 shows a tiling
that satis!es the even-valency condition but still su"ers face colli-
sions during attempted rotation, resulting in a kirigami structure
that is not deployable in the plane.

De!nition 4.1 (Deployment-friendly vertex). Let T = (V, F )
be a planar tiling with a complete cut E𝐿 . Let 𝑀 ↗ V be a vertex of
even valency 2𝑃 . Denote by ↑𝐿1, · · · , ↑𝐿𝑆 the directed edges (cuts) in
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(a) tiling T

(b) complete cut E𝑀

(c) cuts through 𝑂

(d) 𝑆-polygon P1

(e) deployed at angle 𝑄

↑𝑃1

↑𝑃2
↑𝑃3

𝑂1

𝑂2

𝑂3
𝑂

↑𝑃1

↑𝑃2

↑𝑃3

↑𝑃1
↑𝑃2

↑𝑃3

𝑂1

𝑂2
𝑂3

𝑄

𝑄𝑄
P2

exist?

deployable!

Fig. 9. We show a complete cut E𝑀 (arrows in (b)) applied to the tiling in
(a). The vertex 𝑂 is 6-valent, with three incident cut edges ↑𝑃1, ↑𝑃2, ↑𝑃3 ending
at 𝑂, highlighted in (c). In (d), we check whether a triangle P1 can be
formed by translating the cut vectors ↑𝑃𝐿 , which is equivalent to verifying
that

∑3
𝐿=1 ↑𝑃𝐿 = ↑0. If such a P1 exists (i.e., the equality holds), 𝑂 is deployment-

friendly. If all vertices are deployment friendly, the tiling is deployable (e).
Moreover, the polygon P2 formed by the duplicates of 𝑂 is similar to P1,
and the opening angles are equal (more details in Sec. B).

E𝐿 ending at 𝑀 , ordered cyclically. Vertex 𝑀 is said to be deployment-
friendly if

∑𝑆
𝑀=1 ↑𝐿𝑀 = ↑0. Refer to Fig. 9 for notation.

Proposition 4.1 (Necessary and su"cient condition for uni-
form deployability). For a planar tiling with all interior vertices
of even valency, the following are equivalent: (1) Every interior
vertex in the tiling is deployment-friendly. (2) The resulting hinged
kirigami structure is uniformly deployable in 2D.

Sec. B of the supplementary materials presents a proof by construc-
tion. In brief, we show that for a deployment-friendly vertex, after
cutting its incident edges, there exists a con!guration of its neigh-
boring faces where all opening angles are equal and non-zero, and all
faces maintain their exact original geometry without deformation.
In other words, we can realize a deployment state at this uniform
opening angle.

Constructing uniformly deployable tilings. Prop. 4.1 lets us deter-
mine whether a tiling is uniformly deployable. Based on this, we
build a user interface that synthesizes periodic tilings and checks
deployment friendliness at each vertex. Users can de!ne families of
parallel lines by selecting three points on a regular triangle or quad
grid: the !rst two specify the base direction, and the third determines
the o"set for generating parallel duplicates (see the supplementary
video). Intersections of these line families naturally produce even-
valency vertices, so the system only needs to check whether each
vertex is deployment-friendly. Deployment-unfriendly vertices are
highlighted in the UI (see Fig. 10, (a)). If all vertices pass, the system
animates the deployment of the resulting hinged kirigami struc-
ture. This tool enables rapid exploration of novel, deployable tiling
designs (e.g., see Figures 5 and 13).

4.2 Maximally open configurations
Given a periodic tiling T generated by a !nite set of parallel line
families that satisfy the deployability condition (Def. 4.1), we analyze
its deployment behavior after introducing cuts. Our method consists
of two main stages: (1) We !rst determine the unit tile, de!ned as
the smallest region whose translational repetition reconstructs the

(a) tiling T

cut

check

(b)

(c)

unequal
opening angles

(d) fabrication (paper)
matches (b)

↑𝑃1
↑𝑃2

↑𝑃3

↑𝑃1

↑𝑃2

↑𝑃3

3∑
𝐿=1

↑𝑃𝐿 ω ↑0

Fig. 10. (a) A tiling containing deployment-unfriendly vertices (highlighted
in red) can still be deployable (b,c). However, as shown in (c), the open-
ing angles are unequal. Consequently, the deployment is no longer a one-
parameter family and cannot be computed analytically: opening angles
must be optimized at each deployment state. In (b) and (d) we show a sim-
ulated and a fabricated result at a similar deployment stage. See further
discussion in Sec. C in the supplementary material.

entire tiling T . (2) We then analyze the deployment kinematics
of the unit tile with its adjacent tiles. This localized analysis is
su%cient to determine both maximally deployed con!gurations
(w.r.t. area expansion and opening angles) and enables the systematic
generation of arbitrary-scale deployed patterns without simulating
the entire structure.

Identifying the unit tile. Given a set of distinct parallel line families
L = {𝑄𝑀 }, each family 𝑄𝑀 = (p𝑀 , q𝑀 ,𝑅𝑀 ) is de!ned by a base line
passing through two distinct points p𝑀 and q𝑀 , along with its in!nite
parallel replicas o"set along the normal direction to (p𝑀 ↘ q𝑀 ) by
a distance of 𝑃𝑅𝑀 , where 𝑃 ↗ Z. To generate a valid tiling, the set
L must contain at least two line families whose base lines are not
parallel. Without loss of generality, we assume the !rst two families
𝑄1 = (p1, q1,𝑅1) and 𝑄2 = (p2, q2,𝑅2) satisfy the condition that
their direction vectors are not parallel, i.e., (q1 ↘ p1) ⊋ (q2 ↘ p2).
Denote the intersection of the base line of 𝑄1 and 𝑄2 as o, and the
unit line direction t𝑀 = (qi ↘ p𝑀 )/≃qi ↘ p𝑀 ≃, 𝑆 = 1, 2. To determine
the periodicity, we only need to compute the distances along the
directions t1 and t2, denoted as 𝑇1 and 𝑇2, respectively, such that
translations by 𝑇1t1 and 𝑇2t2 preserve all line intersections within
L. See Sec. D of the supplementary for detailed discussions.

Deployment analysis. We construct a 2-by-2 repetition of the unit
tile, denoted as T0, and cut it open into a hinged kirigami structure
T 0. According to Prop. 4.1, if all vertices in T0 are deployment-
friendly, we know T 0 is uniformly deployable. That is, at any de-
ployment state, the opening angles remain equal. This uniformity
allows us to parameterize the entire deployment process using a
single variable: the opening angle 𝑂 . We can optimize 𝑂 to maximize
the area of the open kirigami pattern T 0, accounting both for faces
in the tiling and holes induced by cuts. While this maximum area
con!guration is commonly used in prior works for deployment, we
instead choose the con!guration at the maximum opening angle.
Consider a hinge vertex 𝑀 shared by two faces 𝑁𝑀 and 𝑁𝑁 . Let 𝑈𝑀 and
𝑈 𝑁 denote the internal angles at 𝑀 for these two faces. The maximum
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cut open
& rotate

optimization w/out Efairness optimization with Efairness

E𝐿 = 0.00017
E𝑀 = 0.0075→

E𝐿 = 0.00029
E𝑀 = 0.0032→

Fig. 11. Optimized tilings before (top) and a#er (bo"om, overlaid with the
target shape) deployment. Le!/right sides compare results without/with
the fairness term. Both pa!erns are fabricable, with low unsquared reconfig-
urability error (E𝑄 ) and planarity error (E𝑅 ) in degrees. Adding the fairness
term helps preserve the shape of underconstrained boundary regions and
holes. Red arrows highlight artifacts in the unregularized result.

opening angle allowed at 𝑀 is (2𝑉 ↘ 𝑈𝑀 ↘ 𝑈 𝑁 ). Rotating beyond this
limit causes the faces to collide from the backside. Hence, the global
maximum opening angle for the entire tiling is the minimum of
these local vertex bounds, denoted as 𝑂max; beyond this threshold,
collisions are inevitable. In this work, we de!ne the deployment state
using this maximum opening angle. It avoids optimization overhead
and yields a simple instruction for practical deployment: rotate each
face until a limit is reached. For any opening angle 𝑂 ↗ [0, 𝑂max], we
compute the deployed state by starting from a seed face, rotating its
neighbors by 𝑂 around their shared hinge vertices, and propagating
this rotation face by face through the hinged kirigami structure.

4.3 Inverse design framework
For a chosen uniformly deployable tiling T = (V, F ), we can
compute its deployed 2D con!guration T𝑇 = (V𝑇 , F ). Recall that
F and F are in one-to-one correspondence and share identical
geometry. In essence, T and T𝑇 consist of the same set of faces,
merely rearranged. Given a target freeform 3D shapeM, our goal
is to modify the 2D tiling T , i.e., to solve for a new 2D embedding
X ⇐ R2, such that, after deployment (i.e., rotating each face to its
maximal allowed angle), the resulting con!guration T𝑇 becomes
a 3D embedding Y ⇐ R3 that closely approximates the geometry
of M. In this step, we fuse co-located vertices in V𝑇 (see Fig. 5
step ✇), eliminating the need for a regularizer to keep them aligned
during deployment optimization. Denote 𝑊 = |V| and𝑋 = |V𝑇 |.
We propose to jointly optimize both X and Y:

min
X↗R𝑆⇒2, Y↗R𝑇⇒3

𝑌1Erecon!g (X ,Y) + 𝑌2Eplanar (Y)+ (1)

𝑌3Eshape (Y | M) + 𝑌4Efairness (Y) . (2)

The recon!gurability term penalizes distance distortions between
all vertex pairs within each face, ensuring that the geometry of the
faces remains identical before and after deployment during the
optimization process. Denote by 𝑁 ↗ F the face that corresponds to
𝑁 ↗ F . If vertex index 𝑆 ↗ V participates in face 𝑁 ↗ F , we denote
the corresponding vertex index in 𝑁 ↗ F as 𝑆

𝑅
. The embeddings of

E𝐿 = 0.00027
E𝑀 = 0.034→

𝐿𝑁 = 213

E𝐿 = 0.00042
E𝑀 = 0.030→

𝐿𝑁 = 466

E𝐿 = 0.00078
E𝑀 = 0.015→

𝐿𝑁 = 1841

E𝐿 = 0.00057
E𝑀 = 0.004→

𝐿𝑁 = 7068

Fig. 12. Approximating the same target shape using varying numbers of
tiles from the same pa!ern. Each example reports the number of faces (𝑈𝑈 ),
average unsquared reconfigurability error (E𝑄 ), and average planarity error
(E𝑅 ) in degrees.

the corresponding vertex are denoted as x𝑀 (before deployment) and
y𝑀𝑈 (after deployment). The recon!gurability can be de!ned as:

Erecon!g =
∑

𝑅 ↗F
∑
𝑀, 𝑁↗ 𝑅 𝑍𝑀 𝑁

(##x𝑀 ↘ x𝑁
## ↘ ###y𝑀𝑈 ↘ y𝑁𝑈

###)2 , (3)

where 𝑍𝑀 𝑁 =
(
1
2

(##x𝑀 ↘ x𝑁
## + ###y𝑀𝑈 ↘ y𝑁𝑈

###))↘2 is the vertex-pair
weight, recomputed at each iteration, which yields the squared
relative edge-length error. The planarity energy Eplanar encour-
ages the polygonal faces to remain planar after deployment and is
de!ned as:

Eplanar (Y) =
∑

𝑅 ↗F
∑
𝑀, 𝑁↗ 𝑅

(
(y𝑁↘y𝐿 )Tn𝑈

≃y𝑁↘y𝐿 ≃

)2
, (4)

where n
𝑅
is the unit normal vector of the best-!t plane for each

polygon face 𝑁 , which is recomputed at each iteration. The shape
approximation term Eshape (Y | M) quanti!es how closely the
deployed pattern Y matches the target surfaceM:

Eshape (Y | M) = ∑𝑈
𝑀=1 (y𝑀 ↘ p (y𝑀 ))T np (y𝑀 ). (5)

Here, p(y𝑀 ) denotes the point on the target surface closest to y𝑀 , and
np (y𝑀 ) represents the normal at that point. E"ectively, this term
penalizes deviation by measuring the distance between each point
and the tangent plane of its closest point on the target geometryM.
The fairness term Efairness (Y) =

##Y ↘ Y0
##2
2 encourages faces to

stay close to their initial positions so the overall shape does not
change drastically and retains a regular form (see Fig. 11 for an
example). Here, Y0 is the initial embedding of Y obtained by directly
lifting the deployed 2D pattern T𝑇 onto the 3D shape M via pa-
rameterization. Speci!cally, we compute a parameterization for M
by minimizing the symmetric Dirichlet energy [Smith and Schaefer
2015] to achieve low isometry distortion. This parameterization is
used to lift the faces of the chosen pattern in its deployed con!gura-
tion onto the target shape to obtain the initial 3D embedding Y0 to
initialize Y. See supplementary materials Sec. F for more details on
implementation.

5 Results
Our theoretical insights enable the design of many previously unex-
plored tilings with deployable hinged kirigami structures, as shown
in Fig. 13. Fabricated results using heavy-weight paper (Figures 10
and C.3) and felt (Fig. F.5) validate the accuracy of our simulated
deployment process. We also conduct inverse design experiments:
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Fig. 13. Results with various tiling pa!erns applied to di$erent 3D shapes. Deployed hinged kirigami tilings (blue) overlay the input surfaces (white, shadow
casting disabled). The deployed tilings tightly fit the target shape, and we slightly o$set the input shape along its normals for be!er visualization. In the
supplementary materials Sec. F, we provide the optimized pa!erns before deployment, along with the statistics on shape complexity and optimization. All
deployed hinged kirigami tilings exhibit a maximum reconfigurability error smaller than 10↘2 and a maximum planarity error smaller than 0.1⇑, ensuring
fabricability.
SA Conference Papers ’25, December 15–18, 2025, Hong Kong, HK, China.
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(a) Negative curvatures; each pa!ern consists of approximately 500 faces.

(b) Positive curvatures; each pa!ern consists of approximately 1000 faces.

Fig. 14. Stress tests: Using two distinct pa!erns to approximate similar
shapes with increasing negative (a) and positive (b) curvature. The top-
row pa!ern is more challenging to optimize than the bo!om-row one due
to having fewer holes to absorb distortion. This becomes particularly evi-
dent in extreme curvature cases, where irregularly shaped tiles appear (as
highlighted by the red arrow), though all pa!erns remain deployable with
maximum reconfigurability error smaller than 10↘2 and maximum planarity
error smaller than 0.1⇑ (see full statistics in Supplemental Sec. F).

given a chosen tiling (e.g., via our web UI) and a target 3D shape,
users can specify di"erent tiling densities (see Fig. 12). Our method
then optimizes the 2D tiling geometry to ensure it can recon!gure
and approximate the target shape. Fig. 13 shows results using 6
di"erent tilings to approximate 7 shapes with prominent positive
or negative curvatures. Fig. 14 shows a stress test, where two pat-
terns are used to approximate shapes with increasing negative and
positive curvatures. The formed holes after deployment e"ectively
accommodate extreme curvatures, albeit at the cost of less regularity
in the optimized tilings. Patterns with hole-free con!gurations at
maximum opening angle, such as those in Fig. 2, are more struc-
turally constrained. Achieving high curvature in such cases requires
introducing singularities, as demonstrated in Fig. 15. Fabricating
deployed 3D shapes from 2D tilings poses a tradeo": thin joints
cut into the tiling improve #exibility but are fragile and prone to
breaking during rotation; thicker hinges o"er durability but limit
the achievable rotation angles. In preliminary experiments, we use

deployed

singularity

light/dark blue indicate the front/back sides of faces

intermediate state

Fig. 15. Deploy a complete sphere shape from a flat tiling with singularities.
The parameterization used for initialization is obtained by optimizing for a
unit n-RoSy field using a similar approach to [Meekes and Vaxman 2021].

Fig. 16. A half torus (step ✄) deployed from flat tiling (step ✁), with two
intermediate states shown in between, using felt material.

Fig. 17. A hemisphere shape deployed from hexagonal tilings, using paper.

a laser cutter on felt material, varying power settings to explore this
balance. Figures 1,16-18 show fabrication results with the deployed
shapes (secured with tape due to the bending resistance of hinges).
Our inverse design framework enables a range of applications, in-
cluding architecture (design Fig. 3), rapid deployment systems, and
3D puzzles Fig. 4. See supplementary materials and accompanying
video for more implementation details and results. Code and web UI
can be found at https://github.com/segaviv/kirigami_tessellations.

6 Conclusion, limitations & future work
Our work has several limitations that represent potential directions
for future research. First, although certain non-manifold or non-
periodic tilings can be cut open and recon!gured, they were not
examined in this study. Establishing necessary and su%cient condi-
tions for their deployability could signi!cantly expand the design
space for metamaterials, which we leave as future work.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, HK, China.

https://github.com/segaviv/kirigami_tessellations


10 • Aviv Segall, Jing Ren, Marcel Padilla, Olga Sorkine-Hornung

Fig. 18. Photo of all fabricated results deployed from flat, hole-free tilings,
constructed from paper or felt and secured with tape.

Second, our optimization focuses purely on geometric perspective–
speci!cally, recon!gurability and planarity as deployment con-
straints. Material properties, actuation forces, stability analysis of
the deployed structure and othermechanical factors were not consid-
ered. Our fabrication prototypes using felt or paper with partial cuts
are preliminary; we observe that fabricated shapes with large holes
or high negative curvatures (e.g., the light-blue and pink shapes
shown in Fig. 18) exhibit reduced stability, necessitating boundary
!xation to maintain their target shapes. Moreover, the partial-cut
hinges in thick materials (such as felt) resist too much bending,
and we believe that using more sophisticated mechanisms, such as
those with prescribed rotation axes/paths, using pin joints or cus-
tom mechanical linkages, could o"er greater reliability and control
in deployment. Implementing such mechanical considerations and
analyzing the stability of the deployed structure, considering the
material properties and the hinge type, remains an open challenge.
Third, di"erent tiling types exhibit distinct deployment char-

acteristics, including varying degrees of conformal and shearing
deformation. The holes in the pattern, along with the combinato-
rial permutations introduced during deployment, help absorb local
distortions and enable curvature. In our current framework, the
tiling type is provided as input rather than derived from the target
geometry, and there is no guarantee that the target geometry can
be realized from a given pattern. For example, physical fabrications
show that a fully closed hemisphere shape can be achieved using a
quad pattern (see Fig. 1) and hexagonal pattern (Fig. 17), but not with
the triangular pattern (see Fig. F.4, right). Our current investigation
of the realizable shape space associated with each pattern is largely
empirical (Fig. 14); developing a mathematically rigorous framework
for analyzing these shape spaces remains an open problem. Further-
more, automatically identifying optimal tiling types from geometric
features, such as the curvature pro!le, is an interesting direction
for future research, which could involve formulating a continuous
model to analyze the behavior of the hinged kirigami structures.
If such a model exists, one could gain a better understanding of
the space of shapes that can be achieved from a given pattern, and
where singularities could be placed to extend it.
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Supplemental Materials
A Cu!ing tilings into hinged kirigami structure
Given a planar tiling T = (V, F ), where all vertices have even
valency, our goal is to construct a complete cut E𝐿 that covers all
interior edges in T , such that applying E𝐿 to T yields a hinged
kirigami structure T = (V, F ), in which every vertex in V is
shared by exactly two faces.

The construction is conceptually simple. Consider a vertex 𝑀 ↗ V
with valency 2𝑃 . Let its incident (undirected) edges be cyclically or-
dered as 𝐿1, 𝐿2, · · · , 𝐿2𝑆 , where each pair of consecutive edges 𝐿𝑀 , 𝐿𝑀+1
(indices modulo 2𝑃) belongs to the same face. Let 𝑀𝑀 be the other
vertex of edge 𝐿𝑀 ,⇓𝑆 = 1, · · · , 2𝑃 . To satisfy the hinged condition,
i.e., each vertex is shared by exactly two faces, the directed cuts at 𝑀
must alternate in direction (or follow a consistent reversal):

(𝑀1 → 𝑀), (𝑀 → 𝑀2), (𝑀3 → 𝑀), · · · , (𝑀2𝑆↘1 → 𝑀), (𝑀 → 𝑀2𝑆 ) (A.1)

No two consecutive edge cuts may point in the same direction (both
into or out of 𝑀), otherwise 𝑀 would either belong to only one face in
the resulting kirigami or be shared bymore than two–both situations
violating the de!nition of a valid hinged kirigami structure (see Fig. 7
in the main paper). Thus, to construct a valid complete cut E𝐿 for T ,
we ensure that each interior vertex respects the alternating pattern
in Eq. (A.1), and that every interior edge is included exactly once in
E𝐿 . This can be achieved via breadth-!rst or depth-!rst search, see
Fig. A.1 for an example. Speci!cally, we propagate edge directions
starting from a seed edge, ensuring alternation at every visited
vertex. Since we assume T is a planar orientable manifold and all
interior vertices have even valency, its faces F are guaranteed to be
two-colorable. Once face colors are assigned, we extract the cut edge
directions from the edge orientations of the faces with the same
color (say, pink shown in Fig. A.1) to form E𝐿 . Algorithm 1 provides
the pseudocode for face coloring and constructing E𝐿 . Algorithm 2
shows how to apply the complete cut to generate the hinged kirigami

(a) tiling T (b) constructing E𝑀

𝑃1 𝑃2

𝑃3

𝑃4𝑃5𝑃6

𝑃7

𝑃8

𝑂8

𝑂7

𝑂6 𝑂5 𝑂4

𝑂3

𝑂2𝑂1

𝑂 𝑂 𝑂3

𝑂4

Fig. A.1. (a) The highlighted vertex 𝑂 has valency 2𝑆 (here, 𝑆 = 4), with
incident edges cyclically ordered as 𝑃𝐿 = (𝑂, 𝑂𝐿 ) for 𝑀 = 1, . . . , 2𝑆 . In any valid
complete cut E𝑀 , the directions of two consecutive cut edges must alternate,
as shown by green arrows in (b). To construct such an alternating complete
cut, we propagate directions from a seed edge. Starting with E𝑀 = ⇔, we
add (𝑂1 → 𝑂) , then alternate around 𝑂: (𝑂 → 𝑂2 ), (𝑂3 → 𝑂), . . . , (𝑂 → 𝑂8 ) .
Moving to 𝑂3, where one incident edge is already directed, we continue
the alternating pa!ern. This process iteratively builds E𝑀 by visiting all
interior edges. It is equivalent to 2-coloring the faces with pink and blue (no
adjacent faces share a color) and then assigning clockwise/counterclockwise
directions to pink/blue, as shown in (b).

structure T , where duplicated vertices and edges are created along
E𝐿 , preserving face geometry but updating vertex indices.

B Uniformly deployable tilings
In this section, we prove the necessary and su%cient condition for
a uniformly deployable tiling by construction, as stated in Proposi-
tion 4.1. For clarity, we restate it below:

Proposition (necessary and su"cient condition for uniform
deployability). For a planar tiling with all interior vertices of even
valency, the following are equivalent: (1) Every interior vertex in
the tiling is deployment-friendly. (2) The resulting hinged kirigami
structure is uniformly deployable in 2D.

P!""#. We !rst show (2) ↖ (1), i.e., if a planar tiling where all
interior vertices have even valency is uniformly deployable (see
De!nition 3.1), then every interior vertex in the tiling must be
deployment-friendly (see De!nition 4.1).

ALGORITHM 1: Constructing complete cut E𝐿
Input: tiling T = (V, F ) with even valency at all int. vertices
Output: complete cut E𝐿 as a set of directed edges
1: E𝐿 ↙ ⇔, Q ↙ ⇔
2: pick arbitrary face 𝑁 , assign 𝑎 𝑅 ↙ 0, enqueue 𝑁 into Q
3: while Q not empty do
4: 𝑁 ↙ dequeue(Q)
5: for all uncolored neighbors 𝑁 ↔ of 𝑁 do
6: 𝑎 𝑅 ↔ ↙ 1 ↘ 𝑎 𝑅 , enqueue 𝑁 ↔ into Q
7: end for
8: end while
9: for all 𝑁 ↗ F with 𝑎 𝑅 = 0 do
10: let 𝑁 = (𝑀0, . . . , 𝑀𝑉↘1) counterclockwise
11: for 𝑆 = 0 to 𝑏 ↘ 1 do
12: add (𝑀𝑀 → 𝑀𝑀+1 mod 𝑉 ) to E𝐿
13: end for
14: end for
15: return E𝐿

ALGORITHM 2: Cut tiling into hinged kirigami structure

Input: tiling T = (V, F ) with a complete cut E𝐿
Output: a hinged kirigami structure T = (V, F )
1: initialize V ↙ V, F ↙ F
2: build half-edge structure of T
3: for all directed edge 𝐿 = (𝑀𝑀 → 𝑀 𝑁 ) ↗ E𝐿 do
4: create new vertex 𝑀 𝑁 ↙ duplicate of 𝑀 𝑁
5: add 𝑀 𝑁 toV
6: replace 𝑀 𝑁 with 𝑀 𝑁 in the face 𝑁 containing the edge 𝐿
7: if the edge 𝐿𝑈𝑃𝑊𝑋 in 𝑁 with origin 𝑀 𝑁 is not a boundary edge

then
8: replace 𝑀 𝑁 with 𝑀 𝑁 in the twin face of 𝐿𝑈𝑃𝑊𝑋
9: end if
10: end for
11: return T = (V, F )
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(a) cuts at 𝑂

𝑂

↑𝑃1 ↑𝑃2

↑𝑃4 ↑𝑃3

(b) lengths & cuts

𝑌1
𝑍1

𝑌2

𝑍2

𝑌3
𝑍3

𝑌4

𝑍4

(c) congruent opening angles

𝑄

𝑄

𝑄

𝑄

𝑄

𝑄

𝑄

𝑄

(d) planar holes

𝑎1
𝑎2𝑎3

𝑎4

(e) P : 𝑆-gon formed by the duplicates of 𝑂

edge length {𝑏𝐿 }𝑉𝐿=1 interior angles {𝑐𝐿 }𝑉𝐿=1

𝑂1

𝑂

𝑂
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𝑂

𝑏1
𝑏2

𝑏3
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P 𝑐3 𝑐2
𝑐1𝑐4

𝑌1
𝑌1

𝑄 𝑊↘𝑋
2 𝑊↘𝑋

2

Fig. B.2. Notations used in the proof presented in Sec. B. (a) The cut edges ending at vertex 𝑂 are denoted ↑𝑃1, · · · , ↑𝑃𝑉 (in this example 𝑆 = 4). (b) Let 𝑌𝐿 be the
length of ↑𝑃𝐿 and 𝑍𝐿 the angle between consecutive cut edges. (c) Assuming uniform deployability, all opening angles between the duplicated edges are equal
(colored in gray), denoted as 𝑄 . (d) If the tiling deploys in 2D, the emerging holes from cu!ing are planar 2𝑆-gons. (e) Connecting all duplicates of the same
vertex (in this case 𝑂, 𝑂, 𝑂̃, 𝑂) forms a planar 𝑆-gon whose edge lengths {𝑏𝐿 } and interior angles {𝑐𝐿 } can be directly computed.

Consider an interior vertex 𝑀 with valency 2𝑃 . As discussed in
Sec. A, a valid complete cut requires exactly 𝑃 cuts directed into 𝑀 .
Let these incoming edges, ordered cyclically around 𝑀 , be ↑𝐿1, · · · , ↑𝐿𝑆 ,
and let 𝑀𝑀 denote the starting vertex of cut edge ↑𝐿𝑀 . See Fig. B.2 (a).
We denote the length of ↑𝐿𝑀 as 𝑄𝑀 and the angle between (↑𝐿𝑀 , ↑𝐿𝑀+1),
index modulo 𝑃 , as 𝑐𝑀 . See Fig. B.2 (b). Since we assume the tiling to
be a planar manifold without holes or gaps, we know:∑𝑆

𝑀=1 𝑐𝑀 = 2𝑉 . (B.2)

Since we assume the tiling is uniformly deployable, all the open-
ing angles between duplicated edges are equal, denoted as 𝑂 . See
Fig. B.2 (c), where duplicated edges are shown in matching colors.
By assumption, the tiling is deployable in 2D, so all faces remain
rigid: their angles and edge lengths are preserved throughout the
motion, and any openings (holes) that emerge during deployment
remain planar. Thus, we can compute the interior angles for the
emerging holes 𝑑𝑀 , as illustrated in Fig. B.2 (d):

𝑑𝑀 = 2𝑉 ↘ 𝑐𝑀 ↘ 𝑂 , 𝑆 = 1 · · ·𝑃 . (B.3)

Now, consider the triangular hole formed by a pair of duplicated
edges induced by the cut, e.g. 𝑀1 → 𝑀 , which produces a duplicated
vertex 𝑀 , as shown in Fig. B.2 (e). The points 𝑀1, 𝑀, 𝑀 form an isosceles
triangle: given the opening angle 𝑂 and cut length 𝑄1, the distance
between 𝑀 and 𝑀 can be computed as:

𝑒1 = 2𝑄1 sin 𝑄
2 . (B.4)

This generalizes to all incident cuts. Let P be the 𝑃-gon formed by
the 𝑃 duplicates of 𝑀 after applying all incident cuts around 𝑀 . See
Fig. B.2 (f) for an illustration. The edge lengths {𝑒𝑀 }𝑆𝑀=1 of P are:

𝑒𝑀 = 2𝑄𝑀 sin 𝑄
2 , 𝑆 = 1 · · ·𝑃 . (B.5)

We can also determine the interior angles {𝑈𝑀 }𝑆𝑀=1 of P:

𝑈𝑀 = 𝑑𝑀 ↘ (𝑉 ↘ 𝑂 ) = 𝑉 ↘ 𝑐𝑀 . (B.6)

We can easily check that
∑𝑆
𝑀=1 𝑈𝑀 = 𝑃𝑉 ↘∑𝑆

𝑀=1 𝑐 = (𝑃 ↘ 2)𝑉 . That
is, P is a valid 𝑃-gon by construction with edge lengths {2𝑄𝑀 sin 𝑄

2 }
and interior angles {𝑉 ↘ 𝑐𝑀 }. Scaling P down uniformly by a factor
of 2 sin 𝑄

2 yields a valid 𝑃-gon, denoted as P↔, with edge lengths {𝑄𝑀 }
and the same interior angles {𝑉 ↘ 𝑐𝑀 }. Note that P↔ is equivalent

to the polygon formed by translating the cut edges ↑𝐿1, · · · , ↑𝐿𝑆 and
connecting the ending point of ↑𝐿𝑀+1 to the starting point of ↑𝐿𝑀 . Since
we know that P↔ is planar, we can conclude that

∑𝑆
𝑀=1 ↑𝐿𝑀 = ↑0. By

de!nition, this con!rms that 𝑀 is deployment-friendly. Since the
choice of 𝑀 was arbitrary, it follows that every vertex in a uniformly
deployable tiling is deployment-friendly.
To show that (1) ↖ (2), we apply similar reasoning: given the

edge lengths and interior angles, the shape of the polygon formed by
duplicated vertices is uniquely determined. If a vertex is deployment-
friendly, then the construction guarantees that the opening angles
between duplicated edges are congruent. Therefore, all hinges on
such vertices open uniformly, and the tiling is uniformly deployable.

⫅̸

In the special case where a vertex 𝑀 has valency 4, there are exactly
two cuts incident to 𝑀 , that is, 𝑃 = 2 in the analysis above. Let the
lengths of these two cuts be 𝑄1 and 𝑄2 and let the angles between them
be 𝑐1 and 𝑐2, which satisfy 𝑐1 + 𝑐2 = 2𝑉 . For 𝑀 to be deployment-
friendly, we must be able to construct a 2-gon with edge lengths 𝑄1
and 𝑄2 and interior angles 𝑐1 and 𝑐2. A 2-gon in this context is a
degenerate polygon—a straight segment—formed by 𝑀1 → 𝑀2 → 𝑀1,
closing back on itself. To satisfy the geometric constraints of a valid
2-gon, it must hold that 𝑄1 = 𝑄2 and 𝑐1 = 𝑐2 = 𝑉 . In other words, for
a 4-valent vertex to be deployment-friendly, the two cuts passing
through it must be collinear and of equal length.

Lemma B.1. For a tiling composed of 4-valent interior vertices, the
following statements are equivalent: (1) For every interior vertex
𝑀 , the two incident cuts are collinear and of equal length. (2) The
tiling is uniformly deployable in 2D.

For such a uniformly deployable tiling, the holes created during
deployment take on a diamond shape, since each hole is formed
by two pairs of duplicated edges that originally have equal length.
It is known that a diamond with !xed edge lengths achieves its
maximum area when it becomes a square. This geometric fact is
leveraged in [Jiang et al. 2020] to formulate the maximal area ex-
pansion con!guration. This lemma also explains why the tiling in
Fig. 8 of the main paper is not uniformly deployable: the cuts at the
valency-4 vertices are not collinear.
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ALGORITHM 3: Identify unit tile from parallel line families

Input: L = {𝑄𝑀 }, each family 𝑄𝑀 ↗ L with unit directional vectors
t𝑀 , unit normals n𝑀 , and shifts 𝑅𝑀

Output: Periodicity (𝑇1, 𝑇2)
1: 𝑇1 ↙

𝑅2
tT1n2

, 𝑇2 ↙
𝑅1
tT2n1

2: for 𝑆 ↙ 3 to |L| do
3: 𝑇 ↙ 𝑅𝑀

tT1n𝑀
4: !nd the smallest integers 𝑊,𝑋 s.t. 𝑊𝑇 =𝑋𝑇1
5: 𝑇1 ↙𝑋𝑇1

6: 𝑇 ↙ 𝑅𝑀
tT2n𝑀

7: !nd the smallest integers 𝑊,𝑋 s.t. 𝑊𝑇 =𝑋𝑇2
8: 𝑇2 ↙𝑋𝑇2
9: end for
10: return (𝑇1, 𝑇2)

C Non-uniformly deployable tilings
Proposition 4.1 and the discussion in Sec. B focus on uniformly
deployable tilings, which can be veri!ed by checking whether every
vertex is deployment-friendly. For a tiling that contains deployment-
unfriendly vertices, as shown in Fig. 10 of the main paper and
Fig. C.3, Proposition 4.1 tells us only that it cannot be deployed
uniformly, meaning the opening angles cannot all be congruent.
However, such a tiling may still be deployable. In this case, the open-
ing angles between duplicated edges may di"er, but they remain
mutually dependent due to the global connectivity of the hinged
kirigami structure. To determine deployability, we must optimize for
the opening angles. For the hinged kirigami structure T = (V, F )
derived from the original tiling T , we select a random seed edge 𝐿
and attempt to compute a valid embedding of V when the opening
angle 𝑂 (𝐿) is set to a prede!ned value. We formulate an optimiza-
tion problem with the following objectives: (1) Faces remain rigid;
(2) The speci!ed opening angle 𝑂 (𝐿) is enforced; (3) The deployed
con!guration preserves the periodicity of the original tiling. If a
valid solution is found, we say the tiling is deployable. For inverse
design, we focus exclusively on uniformly deployable tilings, as
their deployment depends on a single parameter (the opening angle)
and admits explicit construction without the need for optimization.

D Extracting the unit tile from parallel line families
Given a set of distinct parallel line families L = {𝑄𝑀 }, each family
𝑄𝑀 = (p𝑀 , q𝑀 ,𝑅𝑀 ) is parameterized by:
• A baseline 𝑄𝑀 (0) passing through two distinct points p𝑀 and q𝑀 ;
• Parallel replicas 𝑄𝑀 (𝑋),𝑋 ↗ Z, generated by translating 𝑄𝑀 (0)
along its normal direction: 𝑄𝑀 (𝑋) = {x ↗ R2 | x = x0+𝑋𝑅𝑀n𝑀 ,⇓x0 ↗
𝑄𝑀 (0)}, where the unit normal n𝑀 is orthogonal to the unit direction
vector t𝑀 = (qi ↘ p𝑀 )/≃qi ↘ p𝑀 ≃.

We assume the !rst two families of parallel lines are not parallel to
each other, i.e., t1 ⊋ t2. The unit tile of this multi-line grid L is the
smallest parallelogram spanned by vectors u1 = 𝑇1t1 and u2 = 𝑇2t2
such that translations by (u1, u2) preserve all line intersections

within L. Formally, we seek the smallest values of 𝑇1, 𝑇2 ensuring
that for every pair 𝑄𝑀 , 𝑄𝑁 ↗ L and for all integers𝑋,𝑊,𝑓,𝑔 ↗ Z, there
exist integers 𝑎,𝑅 ↗ Z such that:

x𝑀 𝑁 (𝑎,𝑅) = x𝑀 𝑁 (𝑓,𝑔) +𝑋𝑇1t1 + 𝑊𝑇2t2, (D.7)

where x𝑀 𝑁 (𝑓,𝑔) := 𝑄𝑀 (𝑓)↓𝑄𝑁 (𝑔) denotes the intersection between the
𝑓-th replica of 𝑄𝑀 and the 𝑔-th replica of 𝑄𝑁 . Informally, starting from
any intersection of 𝑄𝑀 and 𝑄𝑁 , one can reach another intersection
by translating in integer steps along the directions 𝑇𝑕1, 𝑇𝑕2. We
determine the values of (𝑇1, 𝑇2) using Algorithm 3. Essentially, we
scale the unit tile by 𝑄1 and 𝑄2 to !t the remaining families.
E Implementation
The tiling generation UI is web-based, and the inverse design al-
gorithm is implemented in C++ using the libraries libigl [Jacobson
et al. 2018] and Polyscope [Sharp et al. 2019]. We also implemented
a simulation for deploying an optimized tiling into the target shape.
Interpolated intermediate positions are used as initialization, then
optimized for recon!gurability, planarity, and smoothness across
deployment states. All experiments are carried out on an Apple M1
Max chip and 32GB memory. For the inverse design, the embedding
X (the 2D layout before embedding) is initialized using the vertex
positions from the initial tiling T . The embedding Y (the 3D con-
!guration after deployment) is initialized by lifting the deployed
pattern T𝑇 onto the target shapeM using low-distortion (minimiz-
ing the symmetric Dirichlet energy) parameterization [Smith and
Schaefer 2015]. This initialization is also used in the fairness energy
term Efairness. For all experiments, we use the same parameters:
𝑌1 = 10,𝑌2 = 10,𝑌3 = 0.1,𝑌4 = 0.5. During the optimization, we
gradually decrease the weight of the fairness energy 𝑌4 to allow
the deployed con!guration to slide on the target mesh, thereby
improving recon!gurability and planarity errors. We !nd that the
planarity term is essential: without it, Erecon!g is prone to getting
stuck in local minima. Optimization is performed using Newton’s
method and terminates when the maximum recon!gurability error
for any face falls below 10↘2 and the maximum planarity error is
less than 0.1⇑. In most experiments, convergence is reached within
a few seconds.

F Additional results
Fig. F.4 shows two examples of failure cases. Compared to patterns
that contain holes in the deployed state (e.g., in Fig. 13), fully closed
patterns make it more di%cult to achieve high curvatures while
maintaining reasonable fabrication or shape approximation error.
In such cases, introducing singularities is necessary (see Fig. 15 for
an example). As shown in Fig. 1, Fig. 2 and Fig. 17, a hemispherical
shape can be successfully realized using the quad pattern and the
hexagonal pattern, whereas the triangular pattern in Fig. F.4 (right)
performs poorly. This suggests that the shape spaces of di"erent
patterns vary and require further investigation.

Figures F.5 and F.6 show additional deployment process of under-
explored tilings. Fig. F.7 shows the optimized planar tilings corre-
sponding to the results in Fig. 13, prior to deployment. Table F.1 and
Table F.2 report the shape complexity and runtime of experiments
shown in the main paper.
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Fig. C.3. This tiling contains deployment-unfriendly vertices (highlighted in red, le!). Despite this, the tiling remains deployable, as shown by the yellow
paper fabrication, though the opening angles are not congruent.

Ereconf. = 0.017
Eshape = 0.02
Eplanarity = 5.24⇑

cut & deploy

cut & deploy

Ereconf. = 0.024
Eshape = 0.012
Eplanarity = 0

Fig. F.4. Failure cases: using the quad and triangle pa!ern to realize a pringle (le#) and hemisphere (right) shape. We report the maximal values for the
reconfigurability, shape approximation and planarity errors. Although the shape approximation appears reasonable, the non-negligible reconfigurability and
planarity errors make fabrication di$icult, if not impossible.

Fig. F.5. For the tiling in Fig. 5, we show the intermediate deployment states from real-world fabrication (top row, laser-cut felt) and simulated results at
similar stages (bo"om).
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Fig. F.6. For the tilings in Fig. 13 of the main paper, we show the deployment process of the unoptimized regular pa!erns. We color the corresponding faces in
di$erent stages using the same color scheme, applied in a gradient style, to facilitate the observation of their rotations.
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Fig. F.7. For the deployed results shown in Fig. 13, we display their corresponding optimized tilings prior to deployment. For each shape (i.e., each row), the
scales of the tiles are consistent and comparable. For example, the first tiling exhibits much larger holes a#er deployment compared to other pa!erns, so its
optimized tiling requires a relatively smaller area.
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Table F.1. For the target shapes shown in Fig. 13, namely Hemisphere (M1), Lilium (M2), Pringle shell (M3), Shell (M4), Wavy plane (M5), Bumpy plane (M6)
and Botanic garden (M7), and for each pa!ern shown in columns, we report the number of vertices in the pa!ern before and a#er deployment (𝑈𝑌,2𝑂 and
𝑈𝑌,3𝑂 , respectively), the number of faces (𝑈𝑈 ), the average reconfigurability error (E𝑄 ), shape approximation error (E𝑍 ) and planarity error in degrees for
polygonal faces only (E𝑅 ). Additionally, we provide the runtime (𝑋 ) until convergence, measured in milliseconds.

pa"erns pa"ern 1 pa"ern 2 pa"ern 3

target geometry 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7

𝑈𝑌,2𝑂 400 279 302 459 284 380 897 693 524 612 575 462 654 1791 865 759 648 739 761 1141 3010
𝑈𝑌,3𝑂 937 646 689 1078 647 879 2158 1244 941 1087 1027 828 1169 3285 1359 1184 1001 1148 1172 1794 4772#var
𝑈𝑈 724 487 525 830 495 678 1689 960 716 826 781 632 894 2565 1075 933 776 901 926 1424 3860

E𝑄 (⇒10↘4) 8.25 0.43 0.70 2.00 1.97 5.54 14.37 7.76 0.73 0.61 1.58 1.12 5.59 11.26 6.71 0.93 0.71 1.55 1.27 6.67 7.72
E𝑍 (⇒10↘4) 5.46 0.33 0.09 15.47 1.05 4.54 36.85 6.66 7.04 1.98 145.1 7.19 13.56 71.67 9.22 14.91 3.70 235.2 12.39 17.10 74.02err.
E𝑅 ( ⇑ ) 0 0 0 0 0 0 0 0.018 0.019 0.0115 0.013 0.011 0.013 0.006 0.022 0.027 0.015 0.020 0.020 0.011 0.018

𝑋 (ms) 80 100 50 127 95 79 319 303 539 582 318 334 1319 4077 1546 10995 2455 1654 2754 250 463

pa"erns pa"ern 4 pa"ern 5 pa"ern 6

target geometry 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7

𝑈𝑌,2𝑂 684 660 599 795 590 634 1009 867 719 804 887 957 1018 1600 1538 1187 616 692 1059 1100 1581
𝑈𝑌,3𝑂 1101 1057 960 1274 940 1015 1628 1266 1045 1167 1292 1395 1485 2356 2262 1736 892 1007 1549 1619 2320#var
𝑈𝑈 841 805 720 975 715 768 1251 1006 826 916 1027 1113 1188 1900 1820 1382 695 792 1235 1284 1866

E𝑄 (⇒10↘4) 3.75 1.98 1.78 2.34 2.48 3.94 6.91 3.68 1.25 0.82 3.67 1.99 4.06 7.30 6.57 1.64 1.63 3.40 2.43 5.94 9.91
E𝑍 (⇒10↘4) 14.91 16.81 5.41 223.2 18.46 23.69 170.0 14.77 19.89 4.32 277.5 14.79 20.30 144.0 14.25 17.24 8.67 395.7 17.82 28.45 201.8err.
E𝑄 ( ⇑ ) 0.037 0.024 0.021 0.019 0.026 0.019 0.010 0.027 0.027 0.021 0.021 0.023 0.025 0.015 0.022 0.023 0.017 0.018 0.023 0.004 0.014

𝑋 (ms) 346 862 694 827 116 1533 2821 293 784 399 697 579 652 6243 5240 5515 15985 3525 7666 222 1170

Table F.2. Statistics for the shapes with negative curvatures (denoted as 𝑒1,𝑒2,𝑒3,𝑒4) and positive curvatures (denoted as 𝑓1,𝑓2,𝑓3,𝑓4) shown in Fig. 14.

pa"erns negative curvature (Fig. 14a) positive curvature (Fig. 14a)

pa"ern 1 (!rst row) pa"ern 2 (second row) pa"ern 1 (!rst row) pa"ern 2 (second row)

target geometry 𝑒1 𝑒2 𝑒3 𝑒4 𝑒1 𝑒2 𝑒3 𝑒4 𝑓1 𝑓2 𝑓3 𝑓4 𝑓1 𝑓2 𝑓3 𝑓4

#var
𝑈𝑌,2𝑂 357 428 401 465 443 462 508 445 798 776 764 836 817 803 803 894
𝑈𝑌,3𝑂 550 664 629 722 637 663 728 639 1248 1212 1190 1308 1183 1164 1169 1301
𝑈𝑈 425 515 487 561 498 519 571 498 990 959 941 1034 941 925 932 1041

err.
E𝑄 (⇒10↘4 ) 0.62 1.10 1.97 1.01 0.84 1.36 1.21 2.77 1.14 6.18 11.53 1.99 0.51 2.40 8.09 1.70
E𝑍 (⇒10↘4 ) 31.17 33.78 45.22 42.65 18.31 17.81 21.35 26.17 4.79 7.88 11.93 11.07 5.46 7.93 13.09 15.21
E𝑅 ( ⇑ ) 0.037 0.020 0.017 0.033 0.018 0.032 0.020 0.005 0.019 0.016 0.012 0.013 0.019 0.019 0.0134 0.019

𝑋 (ms) 1775 6011 5180 4799 87 115 180 374 832 1153 1879 85 149 181 439 240
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