
Digital 3D Smocking Design

JING REN, ETH Zurich, Switzerland
AVIV SEGALL, ETH Zurich, Switzerland
OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

We develop an optimization-based method to model smocking, a surface
embroidery technique that provides decorative geometric texturing while
maintaining stretch properties of the fabric. During smocking, multiple pairs
of points on the fabric are stitched together, creating non-manifold geomet-
ric features and visually pleasing textures. Designing smocking patterns is
challenging, because the outcome of stitching is unpredictable: the final tex-
ture is often revealed only when the whole smocking process is completed,
necessitating painstaking physical fabrication and time consuming trial-and-
error experimentation. This motivates us to seek a digital smocking design
method. Straightforward attempts to compute smocked fabric geometry us-
ing surface deformation or cloth simulation methods fail to produce realistic
results, likely due to the intricate structure of the designs, the large number
of contacts and high-curvature folds. We instead formulate smocking as a
graph embedding and shape deformation problem. We extract a coarse graph
representing the fabric and the stitching constraints, and then derive the
graph structure of the smocked result. We solve for the 3D embedding of this
graph, which in turn reliably guides the deformation of the high-resolution
fabric mesh. Our optimization based method is simple, efficient, and flexible,
which allows us to build an interactive system for smocking pattern explo-
ration. To demonstrate the accuracy of our method, we compare our results
to real fabrications on a large set of smocking patterns.

CCS Concepts: • Computing methodologies → Shape modeling.

Additional Key Words and Phrases: Smocking, Embroidery, Shape Deforma-
tion, Graph Embedding

ACM Reference Format:
Jing Ren, Aviv Segall, and Olga Sorkine-Hornung. 2023. Digital 3D Smocking
Design. 1, 1 (October 2023), 17 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Smocking is a surface embroidery technique used in textile design
that serves two main purposes: it is highly decorative and provides
ornamentation, and it also has the practical benefit of allowing a
close fit of the garment while maintaining a certain degree of stretch.
Consequently, smocking is an artistic means of controlling a gar-
ment’s fullness, thereby creating more shape for the wearer [Banner
2022; Durand 1979]. Moreover, smocking can act as reinforcement
and insulation, padding over areas such as shoulders and chest to

Authors’ addresses: Jing Ren, ETH Zurich, Switzerland, jing.ren@inf.ethz.ch; Aviv
Segall, ETH Zurich, Switzerland, aviv.segall@inf.ethz.ch; Olga Sorkine-Hornung, ETH
Zurich, Switzerland, sorkine@inf.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

smocking pattern

fabrication

simulated result

smocking pattern

fabrication

simulated result

Fig. 1. We model smocking, a decorative geometric cloth texturing technique,
where pairs of points are stitched together to form a pleated pattern. Here
we show examples of smocked sleeves produced using our method, where
the volumetric smocked textures create natural folds. The geometry of the
smocked fabric computed with our method based on the input pattern
closely matches the physically fabricated counterpart (photos in grey).

add durability to the garment [Toplis 2021]. Garments made with
this technique are called smock-frocks or smocks.

Smocking can be roughly categorized into two styles according to
the embroidering process: English smocking, where the pleating and
stitching are done sequentially, and Canadian smocking, where the
stitching generates the pleating simultaneously. In traditional Eng-
lish smocking, the fabric is first folded into close and uniform pleats,

English smocking Canadian smockingand then the gathered threads are
used as a guide to embroider rows
of stitches through the pleats. The
stitches remain visible and play
the main decorative role, akin to
standard 2D embroidery, whereas
the pleating serves mainly to cre-
ate a thicker base medium and
generate folds when transition-
ing between smocked and non-
smocked parts of the fabric. The
final appearance of an English smocking pattern is predictable, since
the pleats are pre-folded and the embroidery patterns are determined
by the alignment of stitches. In Canadian smocking, the fabric is
pleated by stitching it locally, connecting or “pinching” pairs of
points in a special pattern. The stitches are invisible in the final
result, and the decorative, geometric texture is formed by the pleats
themselves. The final appearance of a Canadian smocking pattern

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

(a) input smocking pattern (b) stitch yellow nodes (c) stitch pink nodes (d) final smocking design
(our result)

back back front back front back front

Fig. 2. The smocking process. A smocking pattern (a) consists of stitching lines (the polylines in black). Each stitching line needs to be contracted into a
point by gathering and sewing together its nodes (b, c). Sewing all stitching lines reveals the final geometric texture (d). All pieces of fabric are shown in scale;
note that smocking shrinks the starting piece of cloth significantly, since multiple points are pinched together.

is much harder to predict based on the given stitch pattern; the
geometric texture is often revealed only when the whole smocking
process is completed, making its design a challenging trial-and-error
process [Efrat et al. 2016].

In this work, we therefore focus on Canadian smocking, with the
goal of creating a digital framework for design and preview, where
users can explore and experiment with various stitching patterns
and visualize the smocking results without having to sew them
physically (Fig. 1). We investigate a mathematical formalization of
the smocking problem and design an automatic and efficient algo-
rithm to compute smocked fabric geometry based on input patterns.
Surprisingly, approaching smocking modeling in a straightforward
way as a constrained surface deformation or cloth simulation prob-
lem generally fails to satisfy all point-to-point stitching constraints
and deliver faithful results, likely due to the intricate, essentially
non-manifold structure of the design, the very large number of con-
tacts and the high-curvature folds. We instead formulate smocking
as a graph embedding optimization problem that guides the cloth
deformation. We extract a coarse graph representing the fabric and
the stitching constraints, and then derive the graph structure of the
smocked result. We solve for the 3D embedding of this graph, which
in turn reliably guides the deformation of the high-resolution fabric
mesh. To demonstrate the accuracy of our method, we compare our
results to real fabrications on a variety of smocking patterns.

Contributions. In this work we propose (1) the first formalization
of smocking design as a graph embedding and shape deformation
problem, (2) an efficient algorithm to compute the smocked fabric
geometry from a given pattern, enabling (3) an interactive tool for
designing smocking patterns.

2 RELATED WORK
Smocking.The word smock comes from the Anglo-Saxon word smocc,
the name of an outer sack-like garment, later called smock frock,
which was worn over a farmer’s other clothes to protect them from
getting soiled [Durand 1979; Spufford and Mee 2017; Toplis 2021].
We refer the interested readers to a recent book “The hidden history

of the smock frock” [Toplis 2021] for details.
Existing research on smocking is related to adult education [Bauer

and Elsey 1992], psychology [Elbyaly and Elfeky 2022], or bedroom
decorations marketing [Joseph et al. 2011]. Efrat et al. [2016] propose
a digital design tool for smocking, where users can tile predefined
unit smocking patterns and then print them on fabric. Their system
does not visualize the result: the smocking itself needs to be com-
pleted manually by sewing the physical fabric. The authors note

that the complexity of smocking makes it difficult to automate, and
that predicting the smocking result of a given pattern is challenging.

Lind [2019] explores the design of colorful jacquard woven pat-
terns that serve as templates for the smocking stitches, such that
the woven pattern shapes the fabric. The jacquard patterns are cus-
tomized for different smocking patterns. During the design and
experimentation, the patterned fabrics have to be produced on a
jacquard machine and then smocked manually in each design itera-
tion. Kim [2020] emulates smocking in a step-by-step manner in a
commercial virtual clothing software [CLO 2023], manually creating
each stitch by simulating a tacking and folding step. Online creators
post similar manual techniques to model smocking details in digital
garments [CLO 2020]. In contrast, our method is fully automatic
and efficiently simulates the entire smocked shape.

Physically based cloth simulation. Following the pioneering work
of Terzopoulos et al. [1987], different elastic models have been
studied for representing cloth dynamics, including finite element
methods [Baraff and Witkin 1998; Narain et al. 2012], mass-spring
systems [Choi and Ko 2002; Liu et al. 2013], and yarn-level cloth
simulation [Cirio et al. 2014; Kaldor et al. 2010]. To accurately model
folding or wrinkling of cloth, different collision handling techniques
have been proposed [Bridson et al. 2005; Li et al. 2021; Tang et al.
2018; Wang 2021]. Chen et al. [2021] propose a new model based on
thin shells to model fine-scale wrinkling. However, general-purpose
cloth simulators struggle with the smocking task, because the pleats
are mainly formed by stitches, whose pinching effect is challenging
to capture by simulated wrinkles from cloth dynamics alone (see
Fig. 6 for an example). FoldSketch [Li et al. 2018] is a dedicated in-
verse modeling system for folds and pleats, where the user sketches
the desired folds on the draped 3D garment, and the algorithm ad-
justs the sewing pattern in order to reproduce them. While very
effective for pleats and gathers that extend along one-dimensional

curved paths, this system is not suitable for sketching smocked
pleats, which are arranged in a two-dimensional pattern with many
occlusions and overlaps. The smocked appearance is not entirely
independent of the fabric type, but the dominant factor that gov-
erns the geometry and the regularity of the pleats is the structural
stitching pattern, as opposed to the cloth parameters. In this work,
we focus on the geometric formulation of smocking and assume the
fabric to be roughly inextensible [Goldenthal et al. 2007].

Shape deformation. Instead of dynamically simulating cloth, smock-
ing can be seen as an end state of a draping process that can be com-
puted via surface deformation with positional constraints [Sorkine
and Botsch 2009]. Among the many surface deformation methods,

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 3

as-rigid-as-possible deformation (arap) [Sorkine and Alexa 2007]
models least-squares isometric deformations, which can be used as
a stand-in for inextensible cloth. Deformation methods generally
do not consider self collisions and contacts and do not do well on
the smocking task when applied directly (Fig. 5). In our approach,
we encapsulate the contacts, i.e., the sewing constraints, in the
smocked graph structure, which guides the subsequent fine-grained
deformation to a feasible and faithful configuration.
Digital design. The subject of our work fits into digital design –

algorithms and systems that assist users in creating digital artifacts
before physically fabricating them. Recent examples in this space
include origami [Dudte et al. 2016], kirigami [Castle et al. 2014, 2016;
Jiang et al. 2020], knittable meshes [Wu et al. 2019], 3D weaving [Ren
et al. 2021] and quilting [Carlson et al. 2015; Igarashi and Mitani
2015; Leake et al. 2021], among many others. Here we focus on
kirigami and quilting, which are more closely related to smocking.

Kirigami is a generalized origami technique where cutting out
holes is allowed. It is often employed for regular tessellation patterns,
similar to Canadian smocking, which are visually appealing and/or
achieve particular mechanical behaviors [An et al. 2020; Wang et al.
2017]. Castle et al. [2014, 2016] explore rules for cutting and folding
kirigami, while Jiang et al. [2020] investigate the inverse problem of
designing a kirigami pattern such that the deployed result is similar
to a given 3D shape. The main difference between kirigami and
smocking is the material: kirigami uses paper, which can neither
stretch nor shear. In contrast, smocking is intended for woven fabric,
where a certain degree of shearing is possible even if the warp and
weft yarns are inextensible. Fabric has a much richer set of degrees
of freedom when deforming, so that smocking geometry is smoother
and generally more varied compared to kirigami.

Leake et al. [2021] formalize the foundation paper piecing process,
which is popular for constructing textile patchwork quilts based
on printed patterns. This work encodes the pattern geometry via a
dual hypergraph and investigates whether a given pattern is valid,
i.e., pieceable. The challenge is to solve for the order of placing the
fabric pieces to meet the constraints posed by known geometry. In
contrast, the challenge of formulating smocking is that the final 3D
geometry is unknown before the fabrication process is completed.
We therefore need to build a graph that can capture the unknown
structure information.

3 PRELIMINARIES
Canadian smocking consists of the following steps: (1) preparing a
smocking pattern by drawing a grid and designing stitching lines
on a piece of fabric; (2) gathering all grid vertices of one stitching
line and sewing them together. The sewing is repeated for all stitch-
ing lines. Optionally, one can (3) fold the pleats formed during the
stitching in a nicer way and iron the smocked pattern if necessary.
See also Fig. 2 and the accompanying video. In Sec. 3.1 we formal-
ize each step and in Sections 3.2 and 3.3 we discuss conceivable
straightforward approaches.

3.1 Notation and problem formulation
A classic smocking pattern consists of a piece of fabric with a 2D grid
drawn on top of it, and a set of stitching lines, each containing a list

of grid nodes. A pleat is formed when the nodes of one stitching line
are gathered and stitched together into a single point. In practice,
a stitching line is annotated by a set of connected line segments
to visually separate different stitching lines from each other. The
overview of the smocking process is illustrated in Fig. 2.

Definition 3.1. A smocking pattern P = (G,L) is a piece of
fabric, represented by a graph G = (V, E) with vertices V and
edges E, annotated with a set of stitching linesL = {ℓ𝑖 }. A stitching
line ℓ is a subset of vertices inV that are to be stitched together.

0

1

2

3

4

1 2 3 4 5 6 7 · · ·

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

1

Fig. 3. A smocking pattern P.

Fig. 3 shows a simple smock-
ing pattern, represented by a grid,
where we denote the vertices
as: V =

{
𝑣0,0, . . . , 𝑣𝑖, 𝑗 , . . . , 𝑣𝑛,𝑚

}
.

Then we can read the annotated
stitching lines L =

{
ℓ𝑖
}

as:
ℓ1 = (𝑣0,1 , 𝑣1,2), ℓ2 = (𝑣1,1 , 𝑣2,0),
ℓ3 = (𝑣3,2 , 𝑣4,1), ℓ4 = (𝑣4,0 , 𝑣5,1),
ℓ5 = (𝑣6,1 , 𝑣7,2), . . . In practice, a smocking pattern is obtained by
tiling a unit smocking pattern regularly on the fabric. We delineate
the unit smocking pattern by a pink rectangle, and the stitching
lines of the unit pattern are marked in red. Note that we include the
diagonals of the grid quads into the graph edges E, since they play
a role in the subsequent graph embedding.

During the smocking process, the vertices belonging to the same
stitching line (e.g., 𝑣0,1 and 𝑣1,2) are gathered and stitched together.
A stitching line can consist of multiple line segments, in which
case more than two points need to be stitched at the same time
(see Fig. 2 (a) for such an example). Our goal is to compute the

1

Fig. 4. Finer discretization P̃.

smocking design, i.e., the 3D geo-
metric texture shape resulting from
any given smocking pattern. For
this purpose, we use a higher-
resolution representation of the fab-
ric, P̃ = (G̃,L), where G̃ = (Ṽ, Ẽ)
andV ⊂ Ṽ , see Fig. 4.

Definition 3.2. The smocking design from a pattern P is a mesh
M̃ = (X̃, G̃) embedded in 3D, where X̃ ∈ R | Ṽ |×3 stores the 3D
positions x𝑝 of all nodes 𝑣𝑝 ∈ Ṽ and satisfies x𝑝 = x𝑞, ∀𝑣𝑝 , 𝑣𝑞 ∈
ℓ𝑖 , ∀ℓ𝑖 ∈ L. We can extract a non-manifold mesh representation
M′ from M̃ by removing the duplicated vertices and updating the
topology of G̃ accordingly.

The above definition seems to imply that the smocking design
can be computed using shape deformation or cloth simulation, but
these approaches fall short.

3.2 Shape deformation using arap
We can cast the smocking design computation as a shape defor-
mation problem and easily adapt as-rigid-as-possible deformation
(arap) [Sorkine and Alexa 2007] to obtain X̃:

min
X̃∈R|Ṽ |×3

∑︁
𝑖

min
𝑅𝑖 ∈𝑆𝑂 (3)

∑︁
𝑗∈N(𝑖)

𝑤𝑖 𝑗

(x𝑖 − x𝑗) − 𝑅𝑖 (x̄𝑖 − x̄𝑗)2
2 ,

s.t.
 x𝑝 − x𝑞 2 = 𝜖, ∀(𝑣𝑝 , 𝑣𝑞) ∈ ℓ𝑘 , ∀ℓ𝑘 ∈ L,

(1)

, Vol. 1, No. 1, Article . Publication date: October 2023.

4 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

(a) direct arap

𝜖 = 0

𝜖 = 10−12

(b) progressive arap (c) ours (d) fabrication

front

back

Fig. 5. Straightforward application of arap deformation [Sorkine and Alexa
2007] to the smocking pattern shown in Fig. 2 fails to recover the expected
smocked geometry (a). The value of 𝜖 stands for the maximum allowed
distance between stitched nodes; when 𝜖 = 0, the deformed mesh stays
planar. In (b) we show the result of gradually decreasing 𝜖 from half of the
initial length to 0. Our method successfully computes the smocking design
(c), closely matching its physical fabrication (d).

where x̄𝑖 denotes the known starting position of vertex x𝑖 in the flat
fabric piece, N(𝑖) is the one-ring neighborhood of the 𝑖-th node in
G̃, and 𝑤𝑖 𝑗 are the cotangent weights [Meyer et al. 2003]. The arap
energy encourages the edges in G̃ to stay rigid and maintain their
length. The deformation occurs due to stitching, which is modeled
via the constraints. For two nodes in the same stitching line, we
allow 𝜖 distance in the deformed state; 𝜖 can either be set to the
thickness of the fabric or zero for simplicity.

We note that the constraints in Eq. (1) are nonlinear and non-
convex for 𝜖 ≠ 0, so we simplify the constraints by linearization.
In Fig. 5, we show the smocking design results of arap obtained
using three different settings for the same pattern illustrated in
Fig. 2 (a). (i) When 𝜖 = 0, we get planar positional constraints
x𝑝 = x𝑞 . Since the initial mesh is planar, the arap deformation does
not manage to get out of the planar configuration and produces
a planar self-intersecting mesh (Fig. 5(a), left). (ii) Softening the
stitching constraints by setting 𝜖 to a small non-zero value allows
the optimization to find a non-planar local minimum, but the result
is irregularly wrinkled (Fig. 5(a), right), likely because the stitching
constraints overpower the optimization, not letting the surface re-
lax. (iii) In Fig. 5(b) we attempt a progressive strategy, where we
iteratively reduce 𝜖 from half of the initial length of the stitching
lines to 0. The result is better, but still not sufficiently regular.

3.3 Cloth simulation
Computing the smocking design can naturally be formulated as a
cloth simulation problem. We use a popular simulator, cloth, imple-
mented in Blender [2023], which uses the point-based dynamics of a
mass spring system [Bridson et al. 2002] and incorporates contacts
and friction. To simulate smocking, we add virtual linear springs of
rest length 0, connecting each pair of nodes in each stitching line.
In Fig. 6, we show the simulated result of the pattern in Fig. 2 over
iterations. We observe a similar effect as with arap: as the sewing
lines become shorter, the textile becomes bunched up in an irregular
fashion, because the simulator is not aware of the high level regu-
larity of the smocking pattern. As a comparison, our result shown
in Fig. 5(c) achieves regular and realistic smocking with zero-length
sewing lines. See Fig. 9 for more examples.

𝑒25 = 2.69 cm 𝑒50 = 1.26 cm 𝑒75 = 0.97 cm

Fig. 6. Simulated smocking design using Blender [2023]. We report the
average length in centimeters 𝑒𝑘 of all sewing lines after 𝑘 iterations, where
𝑘 = 25, 50, 75 (converged), for a smocking pattern of size 50 cm × 70 cm. The
stitching lines have initial length of 5.5 cm and are expected to reach zero
length after stitching.

3.4 Observations & challenges
Through our experiments, we have discovered that while it is possi-
ble to find many smocking designs that meet the criteria outlined in
Definition 3.2, the definition itself falls short of adequately describ-
ing the desired voluminous and regular geometric texture preferred
by artists. In practice, a smocking pattern is usually obtained by
evenly tiling a unit pattern onto the fabric. As a result, one would
anticipate achieving regular pleats with visually repetitive and con-
sistent patterns. Prior knowledge of regularity is crucial, as the
absence of such knowledge causes both state-of-the-art shape de-
formation methods and cloth simulators to struggle with avoiding
visually unpleasant or degenerated local minima. At the same time,
formulating regularity in smocking is quite challenging, given that
the geometry remains unknown until the fabrication process is com-
pleted. Additionally, imposing 3D geometry priors on a 2D input
pattern is nontrivial.

4 METHOD
The experiments above reveal that to model smocking, we need to
somehow impose a global regular structure on the fabric, because
the deformation energies that are based on purely local differential
properties have abundant local minima that lack symmetry and yield
undesirable results. To tackle this challenge, we solve the smocking
design problem in two steps: We consider the input smocking pat-
tern P, defined on a coarse representation of the fabric (see Sec. 3.1)
and optimize its 3D graph embedding. We then apply arap, guided
by the computed 3D embedding, on a finer representation of the
fabric, P̃, to compute the final smocking design. In the following,
we explain our method in detail.

4.1 Smocked graph extraction
We define the smocked graph from the input smocking pattern P =

(G = (V, E) ,L = {ℓ𝑖 }) to represent the non-manifold structure of
the resulting smocking design. We first categorize the vertices 𝑣 ∈ V
and edges 𝑒 ∈ E as follows:

Definition 4.1. A vertex 𝑣 ∈ V in a smocking patternP is called an
underlay vertex if it belongs to a stitching line, i.e., ∃ℓ𝑖 ∈ L s.t. 𝑣 ∈
ℓ𝑖 , and it is called a pleat vertex otherwise.

Definition 4.2. An edge 𝑒 ∈ E in a smocking pattern P is called a
degenerated edge if its two endpoints belong to the same stitching

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 5

test

1

=

=

2 • Anon. Submission Id: xxx

, Vol. 1, No. 1, Article . Publication date: December 2022.

=

smocking pattern P smocked graph S

Fig. 7. Left : for the smocking pattern P, we color the underlay nodes (resp.
pleat nodes) in green (resp. blue), and the underlay edges (resp. pleat edges)
in pink (resp. yellow). The stitching lines and the degenerated edges are
colored in green. Right : we show the corresponding smocked graph S.

line, an underlay edge if its two endpoints belong to two different
stitching lines, and a pleat edge otherwise.

For example, in Fig. 7 we construct the smocked graph S =

(VS, ES) from pattern P by fusing all underlay vertices sharing the
same stitching line into one, deleting degenerated edges and remov-
ing edges that become duplicate as a result of the fusing of underlay
vertices. An example of such duplicate edges is marked with ‘=’ in
Fig. 7 (left); they correspond to a single edge in the smocked graph.

The smocked graph S is a subgraph of P that encodes the struc-
ture of the final smocked design; the vertices and edges of S inherit
the pleat/underlay attributes (the colors in Fig. 7) from P. We denote
the set of underlay (pleat) nodes in S as V𝑢 (V𝑝), and the set of
underlay (pleat) edges in S as E𝑢 (E𝑝). We have

VS = V𝑢 ∪V𝑝 , ES = E𝑢 ∪ E𝑝 . (2)

Note each vertex inV𝑢 represents a single stitching line in P, there-
fore |V𝑢 | = |L|. We also define two important subgraphs of S:

Definition 4.3. The subgraph of the smocked graph S induced
by the underlay edges is termed the underlay graph, denoted as
S𝑢 . It contains all underlay edges E𝑢 and their incident underlay
verticesV𝑢 . The subgraph of S induced by the pleat edges is termed
the pleat graph, denoted S𝑝 . It contains all pleat edges E𝑝 and
their incident vertices, including all pleat verticesV𝑝 and incident
underlay vertices.

We can see that S = S𝑢 ∪ S𝑝 . Fig. 8 provides an intuition for
the smocked graph: we color the smocking pattern by height after
smocking, where yellow corresponds to large height where a pleat
pops up (encoded by the pleat graph S𝑝), and pink signifies the
underlay with low height that forms the base layer of the smocked
design (encoded by the underlay graph S𝑢).

4.2 Smocked graph embedding
The smocked graph is a distilled abstract representation of the
smocking pattern, with the stitching constraints already satisfied.
Our goal is to find a proper embedding of the smocked graph S,
i.e., assign a 3D position for each vertex 𝑣 ∈ VS , such that the
embedded smocked graph forms a realistic 3D structure. We formu-
late this graph embedding problem as an optimization and design
appropriate energies and constraints.

smocking pattern P̃ smocked design M̃

Fig. 8. Inspired by Lind [2019], we color the smocking pattern w.r.t. height
after smocking: yellow highlights the regions that form the pleats, while
pink highlights the regions that are almost hidden in the smocked result
and form the underlay layer that supports the pleats.

4.2.1 Embedding distance constraint. We observe that the nodes
in the smocked graph S are constrained by the underlying fabric
and cannot move completely freely in space. For example, consider
two vertices in the underlay graph 𝑣ℓ𝑖 , 𝑣ℓ𝑗 ∈ V𝑢 (which originated
from stitching lines ℓ𝑖 and ℓ𝑗 in P) with embedded 3D coordinates
xℓ𝑖 and xℓ𝑗 , respectively. Denote by 𝑑 (· , ·) the geodesic distance on
the fabric between two vertices, which is approximately equal to
their Euclidean distance on the flat fabric. The Euclidean distance
between the embedded underlay vertices is constrained by:xℓ𝑖 − xℓ𝑗 2 ≤ min

𝑣𝑝 ∈ℓ𝑖 , 𝑣𝑞 ∈ℓ𝑗
𝑑 (𝑣𝑝 , 𝑣𝑞), (3)

i.e., the shortest geodesic distance on the fabric among any pair of
stitching vertices on ℓ𝑖 and ℓ𝑗 . For simplicity of exposition, here we
assume the fabric cannot stretch.

1

1
√

5 √
5√

5

√
5

1

ℓ𝑖

ℓ𝑗

Fig. 10. The 𝑑𝑖,𝑗 constraint.

For example, in Fig. 10 we can see
that the constraint for the pair of
stitching lines is 𝑑𝑖, 𝑗 = 1. If the em-
bedded positions for the two corre-
sponding underlay nodes had a dis-
tance larger than 1, and assuming in-
finite stiffness, the fabric would tear.

We can compute such an embedding

distance constraint, denoted as
x𝑖 − x𝑗 2 ≤ 𝑑𝑖, 𝑗 , for any pair of

vertices (𝑣𝑖 , 𝑣 𝑗) ∈ VS ×VS . We have 𝑑 𝑗,𝑖 = 𝑑𝑖, 𝑗 and

𝑑𝑖, 𝑗 =

min

𝑣𝑟 ∈ℓ𝑣𝑖 , 𝑣𝑞 ∈ℓ𝑣𝑗
𝑑
(
𝑣𝑟 , 𝑣𝑞

)
, if 𝑣𝑖 , 𝑣 𝑗 ∈ V𝑢 ,

min
𝑣𝑟 ∈ℓ𝑣𝑖

𝑑
(
𝑣𝑟 , 𝑣 𝑗

)
, if 𝑣𝑖 ∈ V𝑢 , 𝑣 𝑗 ∈ V𝑝 ,

𝑑
(
𝑣𝑖 , 𝑣 𝑗

)
, if 𝑣𝑖 , 𝑣 𝑗 ∈ V𝑝 ,

(4)

where ℓ𝑣𝑖 denotes the stitching line in P that corresponds to the
underlay node 𝑣𝑖 in the smocked graphVS .

Ideally, we wish to find a valid embedding of the smocked graph
such that all vertex pairs satisfy the embedding distance constraints.
Intuitively, it means that if we physically pin the vertices of the pat-
tern annotated on real fabric to their embedding coordinates, there
is no risk of the fabric tearing. Note that such a valid embedding
always exists, since we can simply put all vertices in one point, and
all constraints are satisfied in this trivial solution.

, Vol. 1, No. 1, Article . Publication date: October 2023.

6 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung
6

Manuscript submitted to ACM

5

Manuscript submitted to ACM

1

4

Manuscript submitted to ACM

3

M
an
us
cr
ip
ts
ub
m
itt
ed
to
AC
M

1

Fig. 9. For different smocking patterns (top row), we show the computed smocking designs’ front side (middle row) and back side (bottom row).

4.2.2 Maximizing embedding energy. While the distance constraints
determine the search space of valid embeddings, we need an objec-
tive function to find a desirable embedding and avoid the trivial
solution where all nodes get assigned the same location. We wish
to encourage all nodes to stay as far from each other as possible.
Let x𝑖 ∈ R3 be the embedded position of vertex 𝑣𝑖 ∈ VS , and X
the stacking of all these positions. We can formulate the following
optimization problem for the embedding of S:

max
X∈R|VS |×3

∑︁
∀𝑖≠𝑗
∥x𝑖 − x𝑗 ∥2

s.t. ∥x𝑖 − x𝑗 ∥2 ≤ 𝑑𝑖, 𝑗 ∀𝑖 ≠ 𝑗 .

(5)

Despite the simple formulation, this is a difficult, non-convex prob-
lem with 1

2𝑛(𝑛 − 1) hard non-convex inequality constraints defined
on every pair of 𝑛 = |VS | vertices in the smocked graph.

4.2.3 Simpler formulation as graph embedding. Our solution is to
relax the optimization problem in Eq. (5) into an easier to solve
form, where the inequality constraints are replaced by a signifi-
cantly smaller set of (possibly soft) equality constraints, leading to a
classical graph embedding problem. For simplicity, here we assume
the smocking pattern P is such that the underlay graph S𝑢 , as well
as the pleat graph S𝑝 , is non-empty and has exactly one single
connected component. We discuss other cases in Sec. 4.4. Moreover,
we are particularly interested in well-constrained smocking patterns
that produce pleasant patterns when fabricated. These patterns have
balanced and structured underlay region, such that the pleats are
constrained to be regular. See Sec. 5 for further discussion.

We observe that the pleats that form the geometric textures are
constrained by the underlay (see Fig. 8), while the underlay graph
encodes the overall structural information and determines the fi-
nal appearance. The distance bounds in Eq. (4) hint that the local
geometry around the stitching lines gets significantly changed by
smocking, since they are pinched together. The underlay nodes
are heavily constrained by each other and determine the overall

smocking structure. On the other hand, the pleat nodes have more
freedom to move in 3D, since they are not stitched to any other
points on the fabric and they are expected to form the volumetric
3D textures. This inspires us to split the embedding problem into
two sub-problems: the embedding of the underlay and the pleat
graphs in two separate steps, where the embedding of the underlay
is employed to constrain the embedding of the pleat nodes.

4.2.4 Embedding the underlay graph. We first try to find the em-
bedding X𝑢 for the underlay graph S𝑢 = (V𝑢 , E𝑢). We observe
that for a well-constrained smocking pattern, the underlay graph
is planar (see the pink subgraph in Fig. 7 (right)) and therefore can
be embedded in 2D. The maximizing embedding energy encour-
ages large distances between nodes, while the distance constraints
bound them by 𝑑𝑖, 𝑗 , so we propose to find the 2D embedding of the
underlay graph by relaxing Eq. (5) as:

min
X∈R|V𝑢 |×2

∑︁
(𝑣𝑖 ,𝑣𝑗) ∈E𝑢

(x𝑖 − x𝑗 2 − 𝑑𝑖, 𝑗
)2

. (6)

The relaxation is justified by the fact that in reality the distance
constraints are not as stringent, as even the stiffest fabric can stretch
a bit. Instead of considering every pair of underlay nodes, here we
only consider the adjacent ones. Recall that the distance constraint
𝑑𝑖, 𝑗 is derived from the smocking pattern P, which represents a
flat fabric, a connected 2-manifold. Thus it is reasonable to only
consider the constraints in local neighborhoods; the constraints be-
yond 1-ring neighbors should fall in line due to the metric structure
and therefore can be ignored. See Appendix A for more detailed
discussions.

4.2.5 Embedding the pleat graph. We find the 3D embedding X𝑝 for
the pleat nodesV𝑝 in the pleat graphS𝑝 using a similar formulation:

min
X∈R|V𝑝 |×3

∑︁
(𝑣𝑖 ,𝑣𝑗) ∈E𝑝

(x𝑖 − x𝑗 2 − 𝑑𝑖, 𝑗
)2

, (7)

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 7

(a) input stitching lines (b) underlay via Delaunay (c) sample pleat nodes (d) our results

front back

(e) fabrication

Fig. 11. Grid-free smocking design. (a) We combine two smocking patterns of different scales. It is challenging to design a single regular grid to accommodate
all stitching lines simultaneously. (b) Instead of constructing a new grid, we compute a Delaunay triangulation conditioned on the input stitching lines, which
gives us the underlay graph. (c) We then sample pleat nodes w.r.t. the input stitching lines (green dots) and add connectivity between the pleat and the
underlay nodes via local Delaunay triangulation (see the dashed lines for some examples), which gives us the pleat graph. (d) We can then embed the smocked
graph and solve for the smocking design. (e) Physical fabrication of the pattern in (a).

where we want to stretch each pleat edge to its upper bound 𝑑𝑖, 𝑗 to
maximally spread the overall embedding. Recall that some of the
pleat edges in E𝑝 connect a pleat node and an underlay node. For
these edges, the underlay nodes are fixed to the previously solved
positions X𝑢 , and only the positions of the pleat nodes are involved
in the optimization step in Eq. (7). The pleat vertices are initialized
with the same height to help break the symmetry ambiguity.

4.3 Smocking design from embedded smocked graph
Having solved for the embedding X𝑢 ∪ X𝑝 of the smocked graph
S, we immediately deduce the geometry of the coarse smocking
pattern P: all vertices in a stitching line ℓ𝑖 have the same location
as the embedded position in X𝑢 of the respective underlay vertex
𝑣ℓ𝑖 , and all remaining (pleat) vertices in P have their locations in
X𝑝 , corresponding to the vertices in the pleat graph. To compute
the smocking design in finer resolution, we run arap on the high-
resolution smocking pattern P̃, constraining the positions of the
vertices of P to their embedded locations. Fig. 9 shows further
results on several interesting smocking patterns.

4.4 Generalizations: Non-regular smocking patterns
4.4.1 Grid-free smocking design. We can further generalize our al-
gorithm to more challenging cases where the stitching lines are
distributed non-uniformly, making it hard to extract a regular grid
to abstract the smocking pattern. In this case, we can construct a
graph from the input stitching lines based on Delaunay triangula-
tion [Delaunay et al. 1934; Lee and Schachter 1980] and use it to
compute the smocking design as before. See Fig. 11 for an overview
and Algorithm 1 in Appendix C for further details.

Fig. 12. Honeycomb grid.

4.4.2 Honeycomb grid. Our
formulation does not depend
on the exact shape of the
grid, we just need to con-
struct the graph G of the
grid, so we can easily ap-
ply our algorithm to differ-
ent types of grids. See Fig. 12
for an example, where the smocking pattern is defined on a hexago-
nal grid, and the unit pattern (in red) is tiled in a cyclic fashion.

(a) smocking pattern without pleat nodes

(b) with additional pleat nodes

front back

Fig. 13. For a smocking pattern that does not have any pleat nodes (except
some free boundary nodes) as shown in (a), our algorithm can still produce
a reasonable result, but the geometric texture features are less pleasing,
since no constraints on the pleats are considered during the optimization.
An easy fix is to insert additional pleat nodes (colored blue) and pleat edges
(dashed lines), leading to a more regular and realistic result.

4.4.3 Empty pleat graph. It is unlikely to have an empty underlay
graph, unless the set of stitching lines is empty (V𝑢 = ∅), or the
smocking pattern P is not coarse enough, such that the underlay
nodes are not connected to each other (E𝑢 = ∅), which can be easily
fixed by making P coarser (e.g., removing the grid lines that do
not contain stitching points or using Delaunay triangulation, as
discussed in Sec. 4.4.1, to find E𝑢). However, it is possible to have
stitching lines so densely defined that the pleat node set is empty
(see Fig. 13). In this case, we can insert additional pleat nodes to the
smocking pattern and then apply our algorithm.

5 WELL-CONSTRAINED SMOCKING PATTERN
Most online tutorials discuss how to smock a pre-designed pattern,
without providing any heuristics on how to design a good pattern
that leads to satisfactory textures in the first place. Here we discuss
some observations made during our experiments. In general, the
stitching lines of a good smocking pattern should yield an underlay

, Vol. 1, No. 1, Article . Publication date: October 2023.

8 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung2

Manuscript submitted to ACM

P1 P2 M̃1 M̃2

ℓ1

ℓ2

ℓ3 ℓ1

ℓ2

ℓ3

Fig. 14. We compare P2, an under-constrained smocking pattern, to P1, a
well-constrained pattern. 𝑀𝑖 visualizes our modeling result of P𝑖 .

2

Manuscript submitted to ACM 1

P3 P4 M̃3 M̃4

ℓ1 ℓ1

Fig. 15. We compare P4, an over-constrained smocking pattern to P3, a
well-constrained pattern. 𝑀𝑖 visualizes our modeling result of P𝑖 .

graph that is well constrained: if the underlay graph is undercon-
strained, it means that the smocked result is “loose”, its underlay
nodes have excess freedom to move in the 2D plane during the
embedding, which makes the pleats on top of them less determin-
istic. On the other hand, if the underlay graph is overconstrained,
it means we add too many equality constraints to some underlay
nodes, making it impossible to embed the whole underlay graph
in 2D. Embedding in 3D would introduce more degrees of freedom
and make it harder to obtain regular, visually pleasing textures.
Underconstrained underlay. In Fig. 14 we show two patterns P1

and P2, where we increase the width of the middle grid cells in P2
from 1 to 2. We now consider the embedding distance constraints
(defined in Eq. (4)) between the three stitching lines. For P1, we have
𝑑1,2 = 1, 𝑑2,3 = 1, 𝑑1,3 =

√
2. We can embed these three underlay

nodes in 2D, forming a right triangle, and we call this underlay
graph well constrained, since none of the underlay nodes can move
locally (only rigid motion of the embedding as a whole is possible).
However, the underlay graph of P2 is underconstrained. Specifically,
we have𝑑1,2 = 1, 𝑑2,3 = 1, 𝑑1,3 =

√
5. According to triangle inequality,

∥x1 − x3∥ ≤ 𝑑1,2 + 𝑑2,3 = 2 <
√

5 = 𝑑1,3. In other words, 𝑑1,3 can
be removed from Eq. (5) since this inequality can never be violated.
Therefore, during the embedding of the underlay graph, we would
only consider 𝑑1,2 and 𝑑2,3, which allows the underlay nodes of ℓ1, ℓ3
to move around the node of ℓ2.
Overconstrained underlay. P4 in Fig. 15 shows an example of

an overconstrained underlay graph. The underlay node that corre-
sponds to ℓ1 (colored in orange) is connected to 10 underlay nodes
with maximum embedding distance 1 or

√
2. One can check that,

when all the 10 neighboring underlay nodes are coplanar, it is im-
possible to embed the underlay node of ℓ1 on the same plane such
that the maximum embedding distance is reached. In this case, the
underlay graph is overconstrained, and the embedding of the under-
lay by our method cannot achieve zero energy as defined in Eq. (6).
As a comparison, P3 shows a similar but well constrained pattern.

Note that our optimization-based formulation works in both cases
and produces reasonable smocked results, as shown in Figures 14

Fig. 16. We compare the smocking designs of two similar smocking patterns,
where the top pattern has an extra stitching point on the longest stitching
line compared to the bottom pattern.

and 15. We observe that usually the well-constrained smocking pat-
terns can produce more regular and visually pleasant textures. Based
on these observations, we independently designed the patterns in
Fig. 9 (2th, 5th), Fig. 12, Fig. 16 (top), Fig. 17 (bottom).

6 RESULTS
We demonstrate that our algorithm can produce faithful results
that match physical fabrication for different types of smocking
patterns, as can be seen in the figures throughout the paper and
in the accompanying video. We also provide an interactive UI for
smocking pattern exploration. The full implementation can be found
at https://github.com/llorz/SmockingDesign.

6.1 Smocking design
Folded smocking design. During the experiments, we observe that

there are roughly two different styles of designing stitching lines.
The first is conflicting stitching lines, where if extended, pairs of
stitching lines would intersect with each other; such stitching lines
create concave features after stitching (see, e.g., Fig. 18). The second
kind is parallel stitching lines, where after stitching, the in-between
fabric is folded flatly, leading to less voluminous textures (see Fig. 17).
Our method can handle both cases.

Local modification. Our method is intuitive and predictable with
respect to local changes of the unit smocking pattern. As shown in
Fig. 16, when we modify a stitching line, the final smocking design
does not change drastically. Instead, the final results differ locally,
as intuitively expected.

Irregular grids. Our method is not limited to uniform square grids.
We can handle hexagonal grids (Fig. 12), radial grids (Fig. 18), com-
binations of grids (Fig. 11) and other irregular grids (see Sec. 6.2).

Long stitching lines. Computing smocking designs with long stitch-
ing lines can be quite challenging. Stitching lines that stretch across
multiple grid cells, as in Fig. 19(a,b,d), can potentially create large
protruding features and allow the pleat nodes to have more freedom
to move during optimization. Stitching lines that connect multiple
nodes in a single grid cell, as in Fig. 19(c) and Fig. 16, can lead to

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://github.com/llorz/SmockingDesign

Digital 3D Smocking Design • 9

smocking pattern our results fabrication

front back front back

Fig. 17. Folded design. Our method can handle parallel stitching lines, which lead to folded pleats and sharper, less voluminous textures.

(a) regular braid

(b) radial braid

(c) regular leaf
(d) radial leaf

front back

Fig. 18. Radial grids. We show the smocked shapes from regular (left) and radial (right) grids for the braid (top) and leaf (bottom) patterns.

complicated texture in a small region, which is difficult to model in
general. Our method can produce reasonable and visually pleasing
results in both cases.

6.2 Interactive UI
We integrate our method into Blender as an add-on with an inter-
active interface that allows users to design and modify smocking
patterns, as well as visualize the computed smocking designs. Efrat
et al. [2016] also provide a UI for smocking pattern design that allows
users to tile 5 known patterns with different spacing or rotation. The
tiled smocking pattern needs to be printed out for fabrication to see
the resulting smocking design. In comparison, our UI is more flexi-
ble, it supports mesh-level modifications (see Fig. 20) and allows the
user to design stylish patterns by drawing stitching lines freely. Our

method can also be used to explore variations of existing patterns.
For example, in Fig. 21 we show smocking designs with modified
grids using our UI. Since the smocking design computation and
visualization are integrated into the UI, it becomes much easier and
more efficient for casual users to explore different patterns. To stress
this point: it can take a few hours to smock a piece of physical fab-
ric, including drawing grids, annotating stitching lines, and sewing
every single stitching line with pleating and knotting of the threads.
In contrast, our algorithm demonstrates the computed smocking de-
sign in seconds. As a proof of concept, we prototype smocked sleeve
designs, as shown in Fig. 1, by computing the smocking designs
with extra margins, which leads to natural folds on the boundary.
We then deform the smocked shape w.r.t. a hand model using the
“bend” function in Blender. These preliminary results suggest that

, Vol. 1, No. 1, Article . Publication date: October 2023.

10 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

front back

(a)

(b)

(c)

(d)

Fig. 19. Long stitching lines. We show examples of long stitching lines that cross multiple grid cells (a, b, d) and connect many nodes in a small region (c).
Note that the unit smocking pattern in (a) contains two separate stitching lines.

Fig. 20. We use our UI to edit different smocking patterns to decorate letters, including editing operators of cutting and warping grids, removing and adding
stitching lines. We show the edited smocking pattern in the top row and the corresponding smocked results in the bottom row. Note that different smocking
patterns shrink the fabric in different ratios.

(a) irregular leaf (b) arrow with braid

(c) box in different sizes (d) box in curved gridsfront back

Fig. 21. Irregular grids. (a) We increase the space inside the braid pattern, as highlighted in green. (b) We mix the arrow and the leaf patterns, with the gap
in-between highlighted in green. (c, d) We non-linearly deform the box pattern (adjacent unit patterns are colored in different colors for better visualization).

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 11

Marvelous Designer ours fabrication

view 1

view 2

Fig. 22. Comparison to the commercial software [MarvelousDesigner 2023].

front back front back

𝑑𝑝 = 20 mm 𝑑𝑝 = 8 mm

Fig. 23. Using Marvelous Designer to simulate the pattern in Fig. 19 (c),
with particle distance 𝑑𝑝 set to 20 mm (left) and 8 mm (right).

our algorithm can be potentially used for digital garment design.
See Appendix B and the supplementary video for a more detailed
exposition of the functionalities of our UI.

6.3 Comparison to baselines
In Fig. 6 and the supplementary material, we show comparisons to
the cloth simulator of the open-source software Blender [Foundation
and Community 2023]. In this section, we provide additional com-
parisons to the state-of-the-art cloth simulators, ArcSim [Narain
et al. 2012] and C-IPC [Li et al. 2021], and the commercial soft-
ware [MarvelousDesigner 2023], which is closed-source. For all the
comparisons to baselines, we use the fabric in the same resolution
as ours. In particular, for ArcSim and C-IPC we additionally provide
the non-planar initial configuration for the fabric, where all stitch-
ing points are offset out of the fabric plane in the same direction
(see Fig. 25 (e)). If starting from a planar configuration, ArcSim gets
stuck in the first iteration, and C-IPC produces a cluttered result
with irregular pleats.

Comparison to Marvelous Designer (MD) [2023]. To prepare the in-
put for the commercial software Marvelous Designer, each stitching
line in the fabric needs to be specified using the “tack” tool, which
adds extra complexity for smocking simulation in MD. In Fig. 22,
we report the best result obtained from this software, where we
experimented with different parameters such as stiffness, damping,
pressure, sewing distance and so on. Please see the supplementary
materials for full simulations with different parameter settings. We
observe that the “solidify” function, which is designed to maintain
the desired draping state per pattern unit, is the key factor in help-
ing Marvelous Designer achieve the expected box-like geometric
features. However, the simulated smocking details in Marvelous

(a) arrow pattern (Fig. 2) (b) box pattern (Fig. 22)

front back front back

Fig. 24. Results of ArcSim. We provide two examples of using [Narain
et al. 2012], starting from initial configurations with offsets to break the
symmetry. It takes 3 min and 5 min to obtain the results for the arrow and
box pattern, respectively. Without a geometric prior, the simulated pleats
are not voluminous and do not realistically reflect the physical fabrications.

Designer are less regular and do not match the physically fabricated
result as well as our approach does. In Fig. 23 we show the results of
Marvelous Designer on a much more complicated pattern, depicted
in Fig. 19 (c), containing long stitching lines. With the “solidify”
function and high enough resolution, Marvelous Designer struggles
to produce meaningful results, while our method produces a faithful
preview of the fine details of the smocking results.

Comparison to ArcSim. ArcSim [Narain et al. 2012] is a powerful
method for simulating fine features, such as wrinkles and creases for
cloth deformations. We adapt the more advanced implementation1

of ArcSim [Sperl et al. 2020] for smocking, where the to-be-stitched
vertex pairs are specified using the “glue” constraints. In Fig. 24 we
show the best results we attained in consultation with the authors
of the method. We ran the simulation from the initial configura-
tion where all stitching points are offset. We experimented with the
parameters of repulsion thickness, collision stiffness and different
fabric materials. We also disabled the “remeshing” option to pre-
serve the glue constraints. We can see that the shrinking ratio of
the smocked fabric is more accurate than Blender and Marvelous
Designer. However, the lack of volume and realism in the simulated
pleats suggests that this method may not be suitable for use as a
direct preview tool for artists designing smocking patterns.

Comparison to C-IPC. Co-dimensional incremental potential con-
tact (C-IPC) [Li et al. 2021] is a current state-of-the-art method for
cloth simulation that can model thickness and handle collision and
frictional contact. To run C-IPC2, we rescale the smocking pattern
to its intended dimensions in centimeters and offset all stitching
points to guide the simulation. In Fig. 25 we show the best attained
results on four examples in consultation with the authors of the
method. We experimented with various values of bending, stretch-
ing, stitching force, time step size, offset value, etc. We also tried
using both the static solver and the dynamic solver with various
time steps. When using the dynamic solver, we found that using a
large time step (e.g., 𝑑𝑡 = 10 sec.) can achieve much less wrinkled
and more realistic results than the default time step (𝑑𝑡 = 0.01 sec.).
The dynamic solver without collision handling is much more effi-
cient than the static solver. However, finding a suitable equilibrium
state for the dynamic solver is challenging. For example, running the

1https://git.ista.ac.at/gsperl/ARCSim-HYLC
2https://github.com/ipc-sim/Codim-IPC

, Vol. 1, No. 1, Article . Publication date: October 2023.

12 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

(a) arrow pattern (Fig. 2) (b) box pattern (Fig. 22) (c) diamond pattern (Fig. 17) (d) braid pattern (Fig. 18)

(e) add offset to initial fabric
C-IPC fabrication ours C-IPC fabrication ours C-IPC fabrication ours

𝑡cipc = 1 min, 𝑡ours = 2 sec 𝑡cipc = 3 min, 𝑡ours = 2 sec 𝑡cipc = 6 min, 𝑡ours = 4 sec 𝑡cipc = 21 min, 𝑡ours = 22 sec

Fig. 25. Comparison to C-IPC. We show four smocked results (a-d) using C-IPC [Li et al. 2021], where all stitching points in the initial configuration are
offset along the 𝑧-axis, as shown in (e), to obtain more regular results. In comparison, our method provides a more realistic preview of the smocked fabric in a
much shorter time, which allows the artists to iterate the smocking design interactively. For example, for the pattern of (d), it takes our method 22 seconds,
while C-IPC takes 21 minutes.

Table 1. Different solutions to (pre-)visualize a smocking pattern. MD stands
for Marvelous Designer, and “fabric.” stands for manual physical fabrication.

Properties \ Solutions Fabric. Blender MD ArcSim C-IPC Ours

Easy to prepare input? ✘ ‵✔ ✘ ‵✔ ‵✔ ✔

Easy to use (fabricate)? ✘ ‵✔ ‵✔ ✘ ✘ ✔

Are the pleats accurate? ✔ ✘ ✘ ✘ ‵✔ ✔

Fabric shrinks realistically? ✔ ✘ ✘ ‵✔ ‵✔ ✔

Efficient for preview? ✘ ‵✔ ‵✔ ‵✔ ‵✔ ✔

dynamic solver until convergence, where the change of the vertex
positions is smaller than a threshold while setting the vertex veloc-
ity to zero at each iteration, leads to a cluttered configuration. The
best intermediate results are similar to the ones shown in Fig. 25,
where the static solver is used. Overall, C-IPC achieves better and
more realistic results than the other baselines. However, the whole
fabric gets sheared, and the geometric shape of the pleats is not as
accurate as in our method. For example, as highlighted in Fig. 25, the
transition regions between the box shapes are wrong in example (b),
and the bumps along the edges of the diamond shapes are unnatural
in example (c). The method takes minutes to execute. Moreover,
expertise in cloth simulation is needed to tune the parameters in
order to obtain reasonable results, as the default values did not work
out of the box.

Summary. In comparison, our method is much simpler to use,
requiring no domain knowledge, and it is more efficient for preview-
ing purposes, taking only a few seconds. This enables interactive
design iterations for artists. See Table 1 for a comparison summary.

6.4 Ablation study & justifications
Geometric appearance. In this work, we aim to preview the shape

of a smocked pattern solely based on its geometric features, disre-
garding the impact of different fabric materials. Indeed, the final
outcome of smocking can be influenced by the type of fabric used,
which may possess varying levels of stretchiness. However, as evi-
denced by the multitude of examples available online, the geometric

Fig. 26. Fabricating the ARROW pattern using different fabric materials
including canvas, polyester (crisp, thin), polyester (soft, thick), and satin,
from left to right respectively.

appearance of a smocked pattern remains very similar regardless
of the fabric used, including our experiments with canvas, satin,
and polyester (see Fig. 26), as well as numerous examples found
on YouTube and Pinterest featuring silk, leather, wool, cotton, lace,
denim fabrics and so on. It is, in fact, the stitch structure, not so
much the specific material, that ultimately determines the geomet-
ric structure of the pattern. Therefore, it is reasonable to model
the geometric appearance for preview purposes and delegate the
material-dependent characteristics, such as bending stiffness, to
cloth simulators.

Fig. 27. Coarse-to-fine arap.

Smocked graph. The key com-
ponent of our method is the for-
mulation of the smocked graph,
extracted from the smocking pat-
tern, which explicitly encodes the
modified geometry after stitch-
ing (as discussed in Sec. 4.2.1).
To check that our embedded
smocked graph is indeed critical
for the successful computation of
the smocking design, we try ap-
plying arap on the coarse smock-
ing pattern P instead of utilizing the smocked graph. We optimize

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 13

0 20 40 60 80 10010−10

10−2
100
102

𝐸
underlay

𝐸
pleat

Simultaneous Optimization

0 20 40 60 80 100

solve underlay

solve pleat

Two-stage Optimization

front back front back

Fig. 29. Ablation on solver. We compare our two-stage optimization
scheme to a simultaneous setting, where the underlay and the pleat graph
are embedded at the same time. We show the energies over iterations on
the top and the final results on the bottom. The spatial energy distributions
are visualized in Fig. 35.

Eq. (1) on the coarse smocking pattern P and use the result to de-
form the finer fabric discretization P̃, as discussed in Sec. 4.3. Fig. 27
shows the resulting P and P̃. We can see that the result is more
regular than applying arap to the fine grid P̃ directly (cf. Fig. 5).
However, the overall geometric texture is still not as well structured
as ours. The reason is that the pleat vertices have too many degrees
of freedom and are not sufficiently regularized in this approach,
whereas our smocked graph encodes the global structural informa-
tion and firmly sets the relationship between the underlay and the
pleat nodes, yielding more regular results.

Pleat graph embedding. Our method embeds both the underlay
graph and the pleat graph to guide the fabric deformation. To
justify that the pleat graph embedding is indeed helpful, we try

only fix underlay only fix pleat

Fig. 28. Ablation on pleat graph.

using only the optimized em-
bedding of the underlay graph
to guide the arap deforma-
tion, see the left part of Fig. 28.
For completeness, we also
show the result of only using
the optimized embedding of
the pleat graph to guide the
deformation on the right of
Fig. 28. We can see that the
optimized embedding of the underlay graph can help to guide the
deformation to achieve a less cluttered result compared to the other
arap-baselines. However, without guidance from the pleat graph to
reduce the search space, the pleats exhibit inconsistent orientations
and irregular shapes, resulting in an unpleasant (but still feasible)
preview. This ablation justifies that both the underlay and the pleat
graphs contribute to form regular and faithful appearance of the
geometric texture.

Two-stage optimization. It is natural to have a two-stage optimiza-
tion of embedding the underlay and pleat graph separately, since
the pleats are induced by the fixed underlay graph. To further justify

Table 2. Smocking pattern complexity and modeling runtime. We
report the topology of the smocked graph, including the number of under-
lay/pleat vertices and edges, and the resolution of the fine grid |VP̃ | . The
runtimes of embedding the underlay graph S𝑢 , the pleat graph S𝑝 , and
solving for the full smocking design P̃ are reported in seconds.

smocking

pattern

smocked graph complexity |VP̃ |
optimization (sec.)

|V𝑢 | | E𝑢 | |V𝑝 | | E𝑝 | S𝑢 S𝑝 P̃

Fig. 2 24 53 45 186 5074 0.0015 0.130 1.920
Fig. 12 30 66 121 360 8613 0.0012 1.161 3.370
Fig. 17 (a) 64 210 97 382 12769 0.0017 0.714 3.768
Fig. 17 (b) 64 98 249 1038 19321 0.0014 1.972 4.088
Fig. 16 (a) 49 106 130 537 14994 0.0016 0.852 3.269
Fig. 16 (b) 49 106 144 621 11236 0.0014 0.836 3.215
Fig. 18 (a) 60 149 88 418 9116 0.0015 0.402 3.044
Fig. 18 (b) 144 353 262 1222 67600 0.0023 2.705 21.25
Fig. 18 (c) 72 153 103 525 10836 0.0007 0.364 2.882
Fig. 18 (d) 192 392 346 1705 81796 0.0076 7.527 25.89

it, we compare to the setting where the underlay and pleat graphs
are solved simultaneously by minimizing the sum of energies in
Eq. (6) and Eq. (7). We show the corresponding energy over itera-
tions in Fig. 29. We can see that the simultaneous optimization still
produces reasonable results, since the proposed distance constraints
𝑑𝑖, 𝑗 properly encode the modified local structure after smocking.
However, our two-stage optimization leads to a more faithful result
w.r.t. the real fabrications shown in Fig. 5 (d), in 3 times shorter
computation time due to the smaller number of variables to opti-
mize in each stage. More specifically, in our two-stage optimization
process, we first focus on embedding the underlay graph accurately,
then use it to constrain and embed the pleat graph. Solving the two
embeddings simultaneously is more likely to land in an undesirable
local minimum.

6.5 Implementation
Implementation and runtime. We design the GUI as an addon in

Blender and implement our algorithm in Python where the projected
Newton solver is used for optimization. Recall that our algorithm
has three main steps: (1) embedding the underlay graph S𝑢 , (2)
embedding the pleat graphS𝑝 with fixed underlay graph, (3) solving
for the smocking design on a finer grid P̃ based on the embedded
smocked graph. In Table 2 we report the runtime of each step of our
method on multiple smocking patterns with different complexities.
Note that the number of stitching lines equals to the number of
underlay nodes, |L| = |V𝑢 |, so we do not report it separately in
the table. Our method takes a few seconds on the medium-sized
smocking patterns, and up to half a minute on the large ones. As a
comparison, it usually takes up to a few hours to smock a pattern,
including drawing the grid on the fabric, annotating all the stitching
lines and sewing them. Sewing and making knots for all the stitching
points are the most time-consuming parts of the process. Usually
it takes about 2 to 3 minutes to finish a single stitching line for an
experienced maker. We can see that our method is more efficient,
convenient, and error-tolerant.

, Vol. 1, No. 1, Article . Publication date: October 2023.

14 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

𝑤embed = 0
𝑤height = 0

𝑤embed = 10−3

𝑤height = 0
𝑤embed = 10−3

𝑤height = 10

cluttered concave texture

Fig. 30. The LEAF pattern with different parameters in Eq. (8).

Regularizers. When optimizing for the embedding of the pleat
graph as discussed in Sec. 4.2.5, we can add extra regularizers to
make the pleats more regular:

min
X∈R|V𝑝 |×3

∑︁
(𝑣𝑖 ,𝑣𝑗) ∈E𝑝

(x𝑖 − x𝑗 2 − 𝑑𝑖, 𝑗
)2

− 𝑤embed

∑︁
∀𝑖≠𝑗

x𝑖 − x𝑗 2 + 𝑤height Var[ℎ],
(8)

where Var[ℎ] is the variance of the heights (the 𝑧-coordinates) of
the pleat nodes. Here we add the maximizing embedding energy
with a negative sign to make the underconstrained pleat nodes (e.g.,
boundary pleats) stay away from each other. We also encourage the
geometric texture to keep a uniform height distribution by penal-
izing its variance. In Fig. 30 we show a simple ablation study. We
can see that adding the maximizing embedding term leads to a less
cluttered boundary. Meanwhile, adding the pleat height regularizer
can push the concave pleats (with negative height) upwards to form
a more regular pattern. We observe that even without these reg-
ularizers our method produces good results away from the fabric
boundary, and we use very small weights 𝑤embed = 𝑤height = 10−3 to
make the boundary pleats more attractive.

Initialization and parameters. We initialize each underlay node
𝑣ℓ𝑖 by the average position on the flat fabric of all the stitching
points in ℓ𝑖 , with zero height. We initialize each pleat node by its
original position on the fabric, with the initial height set to 1. The
weights 𝑤embed and 𝑤height in Eq. (8) are both set to 10−3 for all the
experiments. We run the embedding optimization until convergence.
The underlay embedding energy at convergence is smaller than 10−8

for a well-constrained pattern.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK
In this paper, we discuss how to mathematically formulate Canadian
smocking, a decorative and practically beneficial surface embroidery
technique. We introduce a simple yet effective method that solves for
the smocking design with 3D geometric textures based on an input
smocking pattern, which is represented by a set of stitching lines
drawn on top of the fabric. We first extract the smocked graph from
the input pattern, where the points in the same stitching lines are
merged into a single vertex, and the degenerated or redundant edges
are removed. This smocked graph encodes the geometric features
of the final smocking design. To obtain the smocking design, we
first embed the smocked graph in 3D, where we embed the underlay
graph and the pleat graph in two steps. We then use the embedded
smocked graph to guide the deformation of the fabric represented

via a finer grid using arap. Our method is efficient and accurate, and
our computed smocking designs are very similar to real fabrications
for a large set of patterns, which allows us to design a user interface
for smocking design exploration.

In this work, we formulate smocking as a pure shape modeling
problem without considering cloth dynamics and collision response.
Though the self-intersections do not significantly affect the visual
appearance of the digital smocking design, it would be interesting
to take them into consideration during modeling. We also wish to
investigate smocking from the perspective of cloth simulation, as
we can see that the state-of-the-art simulators cannot tackle this
problem directly. We leave it for future work to investigate how to
use our computed results as an initial guess for cloth simulators
while incorporating additional material-dependent parameters, such
as bending stiffness, to generate more realistic results at fine scales.
Another limitation of our current approach is that we do not fully
explore all possible smocking designs from an input pattern. For
some complicated smocking patterns (such as Fig. 19 (d)), multiple
visually appealing local minima (i.e., multiple final smocking de-
signs) are possible. These results can guide the user or designer to
iron or steam the smocked fabric into different shapes. We leave this
shape space exploration as future work. Another interesting direc-
tion is to investigate the inverse problem of smocking, i.e., finding
the arrangement of stitching lines such that the final result is close
to an expected 3D texture or shape. Since smocking is a popular
embroidery technique used by high-end fashion designers, we wish
to explore smocking design directly on surfaces in 3D, so that it
could be integrated with garment design. In our experiments, we
notice that the smocked shapes can serve as meta-materials, since
the pleats on top of the rigid underlay create extra thickness and
elastic cushioning. In future work, it would be interesting to design
smocking patterns with particular physical properties.

ACKNOWLEDGMENTS
The authors express gratitude to the anonymous reviewers for their
valuable feedback. Special thanks to Minchen Li for his help with the
comparison to C-IPC, Georg Sperl and Rahul Narain for their help
with the comparison to ARCSim, and to Libo Huang and Jiong Chen
for helpful discussions. Appreciation goes to Danielle Luterbacher
and Sigrid Carl for their sewing advice. The authors also extend
their thanks to all IGL members for their time and support. This
work was supported in part by the ERC Consolidator Grant No.
101003104 (MYCLOTH).

REFERENCES
Ning An, August G Domel, Jinxiong Zhou, Ahmad Rafsanjani, and Katia Bertoldi. 2020.

Programmable hierarchical kirigami. Advanced Functional Materials 30, 6 (2020),
1906711.

Bernadette Banner. 2022. Make, Sew and Mend: Traditional Techniques to Sustainably

Maintain and Refashion Your Clothes. Page Street Publishing.
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. ACM Trans-

actions on Graphics (TOG) (1998), 43–54.
Margie Bauer and Barry Elsey. 1992. Smocking: traditional craft as the expression of

personal needs and adult community education in Australia. Australian Journal of

Adult and Community Education 32, 2 (1992), 84–89.
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions,

contact and friction for cloth animation. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques. 594–603.

, Vol. 1, No. 1, Article . Publication date: October 2023.

Digital 3D Smocking Design • 15

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2005. Simulation of clothing
with folds and wrinkles. In ACM SIGGRAPH 2005 Courses. 3–es.

Christopher Carlson, Nina Paley, and Theodore Gray. 2015. Algorithmic quilting. In
Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture. 231–238.

Toen Castle, Yigil Cho, Xingting Gong, Euiyeon Jung, Daniel M Sussman, Shu Yang,
and Randall D Kamien. 2014. Making the cut: Lattice kirigami rules. Physical review
letters 113, 24 (2014), 245502.

Toen Castle, Daniel M Sussman, Michael Tanis, and Randall D Kamien. 2016. Additive
lattice kirigami. Science advances 2, 9 (2016), e1601258.

Zhen Chen, Hsiao-Yu Chen, Danny M Kaufman, Mélina Skouras, and Etienne Vouga.
2021. Fine Wrinkling on Coarsely Meshed Thin Shells. ACMTransactions on Graphics

(TOG) 40, 5 (2021), 1–32.
Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM

Transactions on Graphics (TOG) 21, 3 (July 2002), 604–611.
Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A Otaduy. 2014. Yarn-

level simulation of woven cloth. ACM Transactions on Graphics (TOG) 33, 6 (2014),
1–11.

CLO. 2020. Garment Details: Expressing smocking detail (w/track tool). https:
//www.youtube.com/watch?v=GwG4gxlMC1o

CLO. 2023. clo3d.com. https://www.clo3d.com.
Boris Delaunay et al. 1934. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matem-

aticheskii i Estestvennyka Nauk 7, 793-800 (1934), 1–2.
Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and Lakshminarayanan Mahadevan.

2016. Programming curvature using origami tessellations. Nature materials 15, 5
(2016), 583–588.

Dianne Durand. 1979. Smocking: Techniques, Projects and Designs. Courier Corporation.
Tamara Anna Efrat, Moran Mizrahi, and Amit Zoran. 2016. The hybrid bricolage:

bridging parametric design with craft through algorithmic modularity. In Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems. 5984–5995.
https://www.tamaraefrat.com/crafted-technology

Marwa Yasien Helmy Elbyaly and Abdellah Ibrahim Mohammed Elfeky. 2022. Inves-
tigating the effect of vodcast to enhance the skills of the Canadian smocking and
complex problem solving. Current Psychology 41, 11 (2022), 8010–8020.

Blender Foundation and Community. 2023. Blender. https://docs.blender.org/manual/
en/latest/physics/cloth/index.html

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.
2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (jul 2007),
49–es. https://doi.org/10.1145/1276377.1276438

Yuki Igarashi and Jun Mitani. 2015. Patchy: An interactive patchwork design system.
In ACM SIGGRAPH 2015 Posters. 1–1.

Caigui Jiang, Florian Rist, Helmut Pottmann, and Johannes Wallner. 2020. Freeform
quad-based kirigami. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–11.

Ruby Joseph, Kaur Prabhjot, Mehtab Shazia, et al. 2011. Lattice smocking techniques:
an innovative approach to smocking. Asian Journal of Home Science 6, 1 (2011),
5–11.

Jonathan M Kaldor, Doug L James, and Steve Marschner. 2010. Efficient yarn-based
cloth with adaptive contact linearization. ACM Transactions on Graphics (TOG)

(2010), 1–10.
Minkyoung Kim. 2020. A study on reproductions of North American smocking design

using a 3D virtual clothing system. Journal of Fashion Business 24, 5 (2020), 106–124.
Mackenzie Leake, Gilbert Bernstein, Abe Davis, and Maneesh Agrawala. 2021. A

Mathematical Foundation for Foundation Paper Pieceable Quilts. ACM Transactions

on Graphics (TOG) 40, 4, Article 65 (July 2021), 14 pages.
Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a Delaunay

triangulation. International Journal of Computer & Information Sciences 9, 3 (1980),
219–242.

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental
Potential Contact. ACM Transactions on Graphics (TOG) 40, 4, Article 170 (2021).

Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018. Foldsketch:
enriching garments with physically reproducible folds. ACM Trans. Graph 37, 4
(2018), 133:1–133:13.

Malin Lind. 2019. Smocked patterns: An exploration of jacquard woven patterns and
smocking techniques for a spatial textile design context. Bachelor thesis, University
of Borås. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-2203

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-Spring Systems. ACM Transactions on Graphics (TOG) 32, 6
(Nov. 2013), 209:1–7.

MarvelousDesigner. 2023. marvelousdesigner.com. https://marvelousdesigner.com/.
Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete Dif-

ferential Geometry Operators for Triangulated 2-Manifolds. In Visualization and

mathematics III. Springer, 35–57.
Rahul Narain, Armin Samii, and James F O’brien. 2012. Adaptive anisotropic remeshing

for cloth simulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–10.
Yingying Ren, Julian Panetta, Tian Chen, Florin Isvoranu, Samuel Poincloux, Christo-

pher Brandt, Alison Martin, and Mark Pauly. 2021. 3D weaving with curved ribbons.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 127.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Computer

Graphics Forum, Vol. 4. Wiley Online Library, 109–116.
Olga Sorkine and Mario Botsch. 2009. Tutorial: Interactive Shape Modeling and Defor-

mation. In EUROGRAPHICS.
Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth.

ACM Transactions on Graphics (TOG) 39, 4 (2020), 48–1.
Margaret Spufford and Susan Mee. 2017. The Clothing of the Common Sort:1570–1700.

Oxford University Press.
Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018.

I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation.
ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–10.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th Annual Conference on Computer Graphics

and Interactive Techniques. 205–214.
Alison Toplis. 2021. The Hidden History of the Smock Frock. Bloomsbury Publishing.
Fei Wang, Xiaogang Guo, Jingxian Xu, Yihui Zhang, and CQ Chen. 2017. Patterning

curved three-dimensional structures with programmable kirigami designs. Journal
of Applied Mechanics 84, 6 (2017).

Huamin Wang. 2021. GPU-based simulation of cloth wrinkles at submillimeter levels.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Transac-

tions on Graphics (TOG) 38, 1 (2019).

A SMOCKED GRAPH EMBEDDING
In this section we discuss the intuition behind our relaxation of the
problem defined in Eq. (5) for the embedding of the smocked graph,
presented in Sections 4.2.4 and 4.2.5.
Embedding the underlay. We embed the underlay graph in 2D

by fully stretching the underlay edges to their upper bound 𝑑𝑖, 𝑗 as
defined in Eq. (4). Intuitively, gathering the underlay nodes in a
stitching line is equivalent to translating all these nodes in the 𝑥𝑦-
plane (the initial fabric plane) to the same position. After smocking
(translation), the underlay nodes still stay on the 𝑥𝑦-plane, i.e., they
remain co-planar. This co-planarity property allows us to solve the
embedding of the underlay in 2D, which significantly reduces the
search space. Indeed, we observe that the underlay regions of the
fabricated results are co-planar, which validates our 2D search space.

Our reformulation is based on the fact that the optimum to Eq. (5)
is at the exact boundary of some inequality constraints. We can
picture the inequality constraints in Eq. (5) as follows: imagine we
have a set of tiny balls or beads placed on the 𝑥𝑦-plane, and each
bead represents an underlay node. For each pair of beads, e.g., the
beads that represent the 𝑖, 𝑗-th underlay node, we use a string with
length 𝑑𝑖, 𝑗 to connect the two beads (see the inset figure). We then
move the beads on the plane such that they are far from each other
and none of the strings are broken. We can imagine that at the
optimal situation, some of the strings become tight, which means if
we move the attached beads any further, these strings will break. At

1

xℓ𝑖

xℓ𝑗

𝑑𝑖, 𝑗

ℓ𝑖

ℓ𝑗

the same time, there are other strings that
stay loose, which means their extreme can
never be reached and they are useless in
constraining the beads. In other words, if
we simply remove the loose strings, and
do the above experiment again, we will
end up with the same configuration (up
to translation and rotation). Moreover, the
short strings are more likely to be tight at
the optimum compared to the long strings.
Since the underlay graph is planar and the 𝑑𝑖, 𝑗 values are derived
from the fabric, which is a connected and presumably inextensible
2-manifold, we can conclude that the underlay edges (e.g., pink

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://www.youtube.com/watch?v=GwG4gxlMC1o
https://www.youtube.com/watch?v=GwG4gxlMC1o
https://www.clo3d.com
https://www.tamaraefrat.com/crafted-technology
https://docs.blender.org/manual/en/latest/physics/cloth/index.html
https://docs.blender.org/manual/en/latest/physics/cloth/index.html
https://doi.org/10.1145/1276377.1276438
http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-2203
https://marvelousdesigner.com/

16 • Jing Ren, Aviv Segall, Olga Sorkine-Hornung

edges/strings highlighted in the inset figure) become tight at the
optimum. Therefore, in Eq. (6) we only consider the underlay nodes
that are connected to each other.
Embedding the pleats. We embed the pleat nodes in 3D on top

of the solved underlay graph. Our reformulation in Eq. (7) is based
on the observation that the 3D embedding of a pleat node is only
constrained by the embeddings of the neighboring nodes. Specifi-
cally, the embedding distance constraint between a pleat node and
a faraway node can be ignored. The intuition behind this is that the
distance constraint between a pleat node 𝑣1 and a faraway node 𝑣2
is satisfied automatically according to the triangle inequality if the
distance constraint between 𝑣2 and a neighboring node 𝑣3, and the
distance constraint between 𝑣3 and 𝑣1 are satisfied. Thus, we only
need to consider the pleat nodes and their neighboring nodes, i.e.,
the node pairs in the pleat edge set E𝑝 .

B INTERACTIVE USER INTERFACE
We implement an interactive user interface in Blender as an add-on
(see Fig. 31) including the following functionalities:
• define a unit smocking pattern by creating a 2D grid and drawing

stitching lines
• define a full smocking pattern by
– tiling the loaded unit smocking pattern (with user-defined rep-

etition and shift of the unit pattern)
– drawing stitching lines directly on a square or hexagonal grid

to define the full pattern
• modify a full smocking pattern by
– deforming the square grid into a radial grid (with user-defined

radius)
– adding margins to the pattern
– combining it with another smocking pattern (along user-specified

axis and space)
– deleting/adding stitching lines from/to the pattern
• simulate the smocked pattern with intermediate steps including
– extracting the smocked graph from the pattern
– embedding the underlay and pleat subgraphs of the smocked

graph
– applying arap to compute the smocking design
• render the smocking design

• run cloth simulator implemented in Blender on the fine-resolution
smocking pattern

Please see the supplementary videos for the real-time demonstra-
tions of our UI. The Blender add-on can be found at https://github.
com/llorz/SmockingDesign/python_implementation.

C ALGORITHMIC DETAILS
Algorithm 1 shows the pseudo-code for grid-free smocking design
discussed in Sec. 4.4.1, which gives instructions on how to construct
a graph from input stitching lines without given grids. Specifically,
given a set of stitching lines as input, we first extract the underlay
nodes V from the endpoints of the stitching lines. We can then
construct the underlay graph by computing a Delaunay triangula-
tion [Delaunay et al. 1934; Lee and Schachter 1980] conditioned on
the input stitching lines. We then sample a set of pleat nodes and con-
struct the pleat graph. As discussed in Sec. 4 and demonstrated by

Fig. 31. We introduce an interactive user interface for smocking design,
implemented in Blender as an add-on.

ALGORITHM 1: Smocking Pattern from Stitching Lines
Input :A set of stitching lines L = { ℓ𝑖 }
Output :A graph G = (V, E) to complete the smocking pattern
V ← {𝑣 ∈ ℓ𝑖 | ∀ℓ𝑖 ∈ L}
// create underlay edges
E ← DelaunayTriangulation (V)
regularly sample a set of pleat nodes V′ inside the bounding box of
L

foreach 𝑣 ∈ V′ do
// create pleat edges for 𝑣
E′ ← DelaunayTriangulation (V⋃ {𝑣})
E ← E⋃ {𝑒 ∈ E′ | 𝑣 ∈ 𝑒 }

end
E′ ← DelaunayTriangulation (V′)
E ← E⋃ E′
V ← V⋃V′

Fig. 8, the pleat region pops up from the base layer (underlay region)
to form the texture. We therefore focus on connecting the sampled
pleat nodes to the underlay graph to construct the pleat graph. For
each sampled pleat node 𝑣 , we compute the Delaunay triangulation
again on the underlay nodes and this pleat node, i.e.,V⋃{𝑣}, from
which we can extract the pleat edges between 𝑣 and the neighboring
underlay vertices. We can additionally connect the pleat nodes to
the neighboring pleat nodes by Delaunay triangulating all the pleat
nodes only. In this way, we can construct the underlay graph and
the pleat graph for smocking design computation from stitching
lines alone. One important observation is that the pleat nodes need
to be evenly sampled w.r.t. the input stitching lines. For example,
one can take the middle points of the stitching lines as the pleat
nodes, as shown in Fig. 13. In this way, the regularity encoded in
the input stitching lines is kept during the pleat graph construction,
and therefore leads to desirable simulated results.

D ADDITIONAL RESULTS
C-IPC without collision. Fig. 33 shows the results of CIPC [Li et al.

2021] on the arrow pattern without collision handling. Disabling
self-collision handling for the static solver does not improve com-
putational efficiency; instead, it leads to worse results compared to

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://github.com/llorz/SmockingDesign/python_implementation
https://github.com/llorz/SmockingDesign/python_implementation

Digital 3D Smocking Design • 17

test

1

(a) A 3D embedding of S

test

1

(b) Smocking design

Fig. 32. Embedding of the coarser (left) and the finer (right) discretization
of the smocking pattern shown in Fig. 7.

static solver, 𝑡 = 1 min dynamic solver, 𝑡 = 18 sec

Fig. 33. C-IPC on arrow pattern without collision handling.

ℓ1 ℓ2 ℓ3 ℓ4

ℓ5 ℓ6 ℓ7 ℓ8 ℓ9

ℓ10 ℓ11 ℓ12 ℓ15 ℓ20 ℓ24

top view

side view

Fig. 34. Step-by-step arap. We run arap to sew each stitching line ℓ𝑖 , 𝑖 =

1, . . . , 24 in the smocking pattern shown in Fig. 2. Note that all visualizations
are in a consistent scale.

Fig. 25. Using the dynamic solver without self-collision handling
results in faster iterations. However, running the dynamic solver
until convergence leads to a cluttered configuration. Here, we select
an intermediate iteration where the pleats are sufficiently formed
and the overall shape starts to show signs of clumping.

Step-by-step arap. Another straightforward solution to model
smocking is by applying arap to each stitching line separately to
mimic the manufacturing process. In Fig. 34, we adopt this strat-
egy to model the smocking pattern depicted in Fig. 2, following a
left-to-right and bottom-to-top sequence of stitching. However, we

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 35. Optimized energy distribution after simultaneous optimization (top)
and our two-stage optimization (bottom), as discussed in Fig. 29. We also
draw the stitching lines in black.

observe that this approach causes the fabric to bend inward instead
of shrinking towards the center as it happens during actual fabrica-
tion (illustrated in Fig. 5(d)). As a result, the final outcome exhibits
a messy appearance with extremely cluttered pleats with many self-
intersections, as shown in Fig. 34 of the final result when viewed
from the side. As a comparison, our progressive arap simultaneously
stitches all the stitching lines, ensuring more uniform “stitching
forces” to promote fabric shrinkage in more accurate directions.
This results in a superior baseline compared to the step-by-step
arap approach.

Optimized energy distributions. In Fig. 35 we visualize the energy
(the sum of Eq. (6) and Eq. (7)) of the computed smocked design
shown in Fig. 29 after optimization using simultaneous solver and
our two-stage solver. For easier visual comparison, we visualize
the per-vertex errors on the original smocking pattern. We can see
that the result from simultaneous optimization shows more promi-
nent error in the underlay region (edges that connect two different
stitching lines), while the result of the two-stage optimization has a
smoother error distribution in the pleat region.

, Vol. 1, No. 1, Article . Publication date: October 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation and problem formulation
	3.2 Shape deformation using arap
	3.3 Cloth simulation
	3.4 Observations & challenges

	4 Method
	4.1 Smocked graph extraction
	4.2 Smocked graph embedding
	4.3 Smocking design from embedded smocked graph
	4.4 Generalizations: Non-regular smocking patterns

	5 Well-Constrained Smocking Pattern
	6 Results
	6.1 Smocking design
	6.2 Interactive UI
	6.3 Comparison to baselines
	6.4 Ablation study & justifications
	6.5 Implementation

	7 Conclusion, Limitations and Future Work
	Acknowledgments
	References
	A Smocked Graph Embedding
	B Interactive User Interface
	C Algorithmic Details
	D Additional Results

